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Abstract— In manufacturing, motion planing of multi-robot
cells is a demanding activity. The issue of work-piece posi-
tioning is still mostly solved using the human competence, by
trial and error procedures, making feasible solutions hard to
find, and making it a time consuming procedure. Surely, the
optimization of a custom objective function along a path is
complex, due to the dimension of the feasible-configuration
space, its high non-linearity, and to the collision probability
along complex trajectories. Furthermore, a human approach to
the problem, makes the exploit of the task redundancy, often
found in industry, a complex matter. This work proposes a two-
layer iterative optimization method that integrates an external
Whale Optimization and an internal Ant Colony Optimization
algorithm, allowing the optimization of a user-defined objective
function along a working redundant path, to produce a quasi-
optimal, collision free solution within the feasible-configuration
space. The trials result a good trade-off between computing
time and solution optimality.

I. INTRODUCTION

Multiple robots configurations are often used in industry
for a huge variety of tasks (finishing, cutting, painting,
etc.) [1], [2], thanks to the dexterity and re-configurability
offered(see for example Figure 1). In such a setup, the
position of the work-piece greatly affects the feasibility (e.g.,
respect of the joints speed limits) and the execution accuracy
in term of path tracking as consequence of the different robot
kinematics parameters(e.g., different joints speed, accelera-
tions, friction, etc.). Furthermore, the trajectory has to be
collision free, which is a hard requirement for complex paths,
especially when the tool path involves re-orientations.

In case of a single robot configuration, a common ap-
proach is the optimization of the robotic dexterity on the
trajectory [3]–[7], ignoring problems such as backlashes or
transmissions elasticity. To cope with such complications,
[8]–[12] proposed methods tailored on specific tasks and
setup that may be extended to multi-arm work-cells. An
interesting similar practice is to optimize the work-cell layout
[13], [14], which is hard to carry out in industry, where
cells are used for many different tasks, and are hardly
modifiable. The main problematic to be tackled in the matter,
is the domain search space hugeness, and its non-connected
manifold since the constraints are always expressed in the
Cartesian space but the inverse kinematics is not a bijective
function.
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In such a field of research, the here presented work,
discussed in the next Section, is an evolution of [15], where
the methodology consists of splitting the problem in two
sub-problems, and to run iteratively two nested optimizers:
first the problem of the object positioning is solved (e.g.,
definition of the Robot-2 holding position), then, the Robot-
1 redundant path is optimized. In order to improve the work,
the task redundancy and collision avoidance are now taken
into account, furthermore, the inner algorithm is adapted
to the graph complexity, trough the adoption of a better
algorithm design, and to dynamic parameters tuning.

II. METHOD

The method is composed by an external Wale
Optimization Algorithm, in charge of the workpiece position-
ing, while an internal Ant Colony Optimization algorithm
maximizes the objective function along the robotic path.
Given a starting position outputted by each WOA particle at
every iteration, a directed weighted graph is formed joining
all the consecutive redundant solutions for every frame of the
working trajectory, where the task redundancy is discretized
in the Cartesian space using Halton points. The graphs nodes
weights values are then assigned, based on a kinematic
property of the nodes, and solved using a Min-Max Elitist
version of the ACO algorithm, which is proven to carry out
better results with huge and complex graphs. The solutions
are then forwarded to the WOA for the computation of the
next workpiece pose. The internal optimization loop ensures
the lack of collisions, in order to optimize in proximity of
feasible paths only. The parameters for the method are the
iterations number of WOA, number of the whales particle,
iterations of ACO, and number of ACO particles, while the
setting of the heuristics internal parameters is dynamically
done according to [16].

Fig. 1: Laser welding performed by three cooperative Robot.



III. PERFORMANCE ANALYSIS

The software architecture designed, takes advantage of the
ROS-Industrial, and it also employs a modified version of
the ikfast openrave [17] for parallel computation on GPU.
Its architecture is shown in Fig 2. The setup is composed by
two ABB IRB4600 configured for pipes laser cutting. The
objective function implemented consist of the maximization
of the inverse of the quadratic sum of the joints speed along
the trajectory. Redundancies have been introduced for the
rotation around the cutting head Z axis and, specifically, the
head Z axis can freely move inside a given cone with a small
aperture. The tested trajectory are an elliptic hole cutting on
a pipe side, and a complex pipe tip trimming with a full
re-orientation of the cutting head.

All the computations outputted a collision-free solution.
At the begin, the algorithm explores the working robot
joint space, the hold solutions are diverse for each WOA
particle, and the value of the objective function increases
considerably, changing at every iteration, due to the WAO
algorithm nature and its parameters value. Then, the WOA
algorithm particles move in proximity of their best solutions
and the exploration is concluded, the search is now focusing
on optimizing the best solutions found so-far, settling on the
nearest optimum points. The solutions show a huge exploit of
the available redundancy, changing the orientation during the
movement in order to decrease joint speeds and accelerations
during the work head re-orientations. Averagely, the solution
frames drifts from the Frenet frame by 40°.

The algorithm running time depends linearly on Nwhales

and NWOA, Figure 3, where the average time and its
standard deviation are plotted for different parameters. The
running time deviation value is due to the collision checking
phase, which is the non-deterministic part of the algorithm
in terms of execution time. The bottom part of figure 3
shows the trend of the objective value per whales and whales
iteration numbers, showing that it has an asymptotic be-
haviour, meaning that adding resources to the problem does
not increase linearly the solution goodness. This behaviour
highlights the fact that the optimization problem is well
solved with a limited amount of resources, that the solution
joint space is explored adequately by the WOA and the
redundancy trajectory graph is fully explored by the ACO.

IV. CONCLUSION

The method provides a quasi-optimal solution, and it is
efficient in resource usage and robustness. The running time
is satisfactory but relevant, due to the high amount of offline
data to compute, although, the method is highly parallelizable
so the calculation time is expected to decrease with usage of
high-end technologies. Results show that the exploitation of
the task redundancy is a key element to the optimization.
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