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Abstract—The vibrational behavior of a robot arm plays an
important role in some industrial applications, such as machining.
In this paper, the variation of the inertia terms of a robot
arm is investigated with the creation of a mathematical model.
Validation tests are provided.

Index Terms—robot, inertia, modes of vibration.

I. INTRODUCTION

In intensive industrial applications, such as machining, very
few industrial robots are used, mainly due to their low stiffness
[3]. In fact, robot compliance may generate chatter vibrations,
with a consequent reduction in surface finishing.

To overcome this problem few solutions have been proposed
[1], [2], but most of them rely on the adoption of additional
hardware to increase the manipulator stiffness.

However, the intrinsic properties of the robot allow to
modify the inertial data of the structure: if an industrial robot
(Figure 1) is fully extended on the horizontal plane, the
moment of inertia about joint 1 reaches the maximum value;
conversely, if the robot is on a position close to robot’s base,
the inertia with respect to joint 1 axis would be much lower.

In this sense, this paper would like to investigate how the
configuration, and as a result the components of the inertia
matrix, influences the vibrational properties of a 6-axis robot.

II. DYNAMIC MODEL

Let’s consider a configuration described by a set of joint
variables qqq0. In a study of vibrations for the development of a
dynamic model, the joint variables, velocities and accelerations
around this configuration are defined as:

qqq = qqq0 + ∆qqq , q̇qq = ∆q̇qq , q̈qq = ∆q̈qq (1)

where ∆qqq contains joint variations around the chosen config-
uration. By neglecting Coriolis and centrifugal terms [4], the
equations that drive the dynamic model under free vibrations
are:

MMM(qqq0)∆q̈qq +CCCq∆q̇qq +KKKq∆qqq = 0 (2)

where MMM(qqq0) is the n × n mass matrix qqq0-dependent, CCCq is
a diagonal matrix that accounts for joint damping and KKKq is
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Fig. 1. The robot Adept Viper s650 reference frames.

a stiffness matrix that accounts for joint compliance. Gravity
torques are negligible for free vibrations.

In particular, usually MMM(qqq0) can be calculated from the
robot inertial properties, namely link mass mi, center of mass
GGGi, and inertia tensor IIIi; the partial Jacobians JJJp,i and JJJO,i;
the rotation matrix RRRi from link i to base frame:

MMM(qqq0) =
5∑

i=1

(miJJJ
T
p,iJJJp,i + JJJT

O,iRRRiIIIiRRR
T
i JJJO,i) (3)

Due to the mechanical structure of the robot MMM(qqq0) is a
non-diagonal matrix, which means that a vibrational mode i
(dominated by joint i) includes small contributions of other
joints. The following section will analyze this aspect.

III. NUMERICAL RESULTS

The model described in the previous Section has been
implemented for an Adept Viper s650 6-axis robot. While
the joint stiffnesses have been retrieved from experimental
analysis, the inertia properties have been calculated both from
the datasheet and CAD data obtained from the vendor website.

Equation 3 shows that MMM highly depends on the configu-
ration. Since KKKq is configuration-independent, it results that



M 11 M 12 M 13 M 14 M 15 M 22 M 23 M 24 M 25 M 33 M 34 M 35 M 44 M 45 M 55

10-8

10-6

10-4

10-2

100

102
In

er
tia

 [k
g 

m
2
]

Mass Matrix mean absolute values (1000000 random configurations)

Fig. 2. Mean values and standard deviations of mass matrix terms (106
random configurations)
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Fig. 3. Effect of joint value q3 on inertial cross coupling between joints 2
and 3. Black dashed lines describe the mechanical limits of the joint

also the resonance frequencies depend on the configuration. In
our case MMM is a 5× 5 matrix since joint 6 is axial-symmetric
so its contribution is negligible.

Figure 2 shows how the terms of the inertia matrix MMM vary
with the configuration qqq0. The red bars show the diagonal
terms, whilst the blue bars show the coupling terms. It is clear
how the latter terms are not negligible in the inertial analysis
of an industrial robot. It is worth to notice how there is a
strong coupling between joints 2 and 3 (Figure 3) since the
coupling term M23 = M32 is of the same order of magnitude
of the diagonal terms M22 and M33, respectively related to
joint 2 and 3. This result is rather intuitive since these two
joints are parallel and consecutive.

The coupling between joints 2 and 3 can be found also if
the resonance frequencies are analyzed (Figure 4): whilst the
resonance frequencies f1, f4, and f5 show small variations,
f2 and f3 show wider ranges. Validation tests have been per-
formed to validate the model: Table I shows strong correlation

Mode Conf: [0,30,30,0,90,0]◦ Conf: [30,-50,160,0,90,0]◦
Calc. f [Hz] Exp. f [Hz] Calc. f [Hz] Exp. f [Hz]

1 15.4 16.3 12.9 13.3
2 16.1 17.8 15.7 14.5
3 33.0 36.2 46.1 40.2
4 57.2 58.4 57.2 59.1
5 171.9 170.5 172.3 171.8

TABLE I
VALIDATION RESULTS

f1 f2 f3 f4 f5

0

20

40

60

80

100

120

140

160

180

F
re

qu
en

cy
 [H

z]

Resonance frequencies (10000 random configurations)

(a)

Fig. 4. Mean values and standard deviations of natural frequencies in the
workspace with random configurations

between calculated and experimental frequencies.

IV. CONCLUSIONS

If vibrations are an important aspect of an industrial robot
application, robot configurations should be taken into account
in the task design. This paper shows that resonance frequencies
vary with the configuration, and joints 2 and 3 (commonly
parallel and consecutive in most industrial robots) are bounded
by inertial coupling that affects the dynamic behaviour of the
robot.
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