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Abstract—We propose an extension to the Task Priority Matrix
(TPM) method for redundancy resolution that includes also hard
inequality joint constraints. This is done by combining TPM with
a modified version of the basic Saturation in the Null Space
(SNS) algorithm. Comparative simulations are reported for the
21-DOFs Romeo humanoid robot.

Index Terms—Motion control, redundant robots, task priority,
hard joint constraints.

I. TASK PRIORITY CONTROL
For a kinematically redundant robot, the most common way

to execute the desired Cartesian tasks with different assigned
priorities is to use null-space projections [1]. This method
is simple and ensures a strict priority. However, it requires
recursions (from highest to lowest priority tasks, and possibly
back) and suffers from joint velocity discontinuity during any
change in the task priority order. Also, hard joint constraints
could not be respected explicitly. The discontinuity problem
can be solved by using suitable scaling factors so as to switch
smoothly between the tasks [2]. Hard inequality constraints in
the joint space are satisfied using the Saturation in the Null
Space method (SNS) [3]. Alternatively, a unified optimization
problem can be defined and then solved using the Hierarchical
Complete Orthogonal Decomposition (HCOD) [4].

In [5], the Task Priority Matrix (TPM) method was pro-
posed, which is simpler and faster than previous task priority
approaches. Using TPM, redundancy resolution is totally sep-
arated from task priority handling. At the current q, one has

q̇ = J#F ẋ, (1)

where q̇ ∈ Rn are the joint velocity commands,

J = [JT
1 . . . JT

i . . . JT
l ]

T (2)

is the augmented matrix with the Jacobians J i ∈ Rmi×n

related to the l desired tasks (
∑l

i=1 mi = m), and

ẋ = [ẋT
1 . . . ẋT

i . . . ẋT
l ]

T , (3)

is the Stack of Tasks (SoT). The square matrix F ∈ Rm×m has
to be computed in a specific way to impose the desired task
priority. This is done depending only on the QR decomposition
for the transpose of the augmented Jacobian JT , and using the
Gauss-Jordan elimination method. In this case, any change in
the task priority structure requires only to modify the F matrix
in (1), which contains a compact but complete information on

the different task dependencies. Note that the TPM method
returns exactly the same solution obtained by the null-space
projection method, but it is simpler and computationally faster.
In [6], we extended and implemented the TPM method at the
acceleration level to eliminate any discontinuities in the joint
velocity due to any change in the task priorities or dependen-
cies, and to include the consideration of robot dynamics for
joint motion damping. However, joint inequality constraints
have not been considered so far.

In this work, we propose another extension to the TPM
method in order to include a particular class of inequality
constraints in the priority stack of tasks, namely joint inequal-
ity constraints of the box type (i.e., limits on joint range and
velocity). For this, we combine the basic SNS algorithm [3],
designed to control a single Cartesian task under hard joint
constraints, with the original TPM method. First, the F matrix
is computed according to the desired priority of the Cartesian
tasks, see [5] and [6] for details. Then, the modified basic SNS
algorithm is applied as presented in Algorithm 1. The main
difference w.r.t. the original SNS algorithm is in its core step,
with the inverse differential solution computed now as

q̇ = q̇N + (JW )#F (ẋ− Jq̇N ), (4)

where q̇N and matrix W = diag{Wii} with 0/1 elements
are used to apply saturated velocities on the joints that are
overdriven by the simple pseudoinverse solution. According to
Algorithm 1, joint inequality limits are always at first priority,
and then the desired Cartesian tasks priority is imposed
through the F matrix. When rank (JW ) < m, the scale
factor s ≤ 1 is here uniformly applied to all tasks, regardless
of their priority. When no joint limit is exceeded, i.e., W = I ,
the solution returned by Algorithm 1 is exactly as (1).

Our proposed solution can be seen as an alternative to the
SNS algorithm for multiple tasks with priority [3]. When using
the latter, however, the scaling factor is applied on each task
separately and by the least amount.

II. RESULTS

A comparison between the TPM in (1) and the proposed
Algorithm 1 is done through MATLAB simulations, using a
simplified version of robot Romeo with 21 DOFs (see Fig. 1)
and considering the same desired Cartesian tasks and other
simulation parameters presented in [5]. For Algorithm 1, we



Algorithm 1 SNS-TPM algorithm

W = I , q̇N = 0, s = 1, s∗ = 0

repeat
limit exceeded = FALSE

q̇ = q̇N + (JW )
#
F (ẋ− Jq̇N )

if
{
∃ i ∈ [1 :n] :

q̇i < Q̇min,i .OR. q̇i > Q̇max,i

}
then

limit exceeded = TRUE

a = (JW )
#
F ẋ

b = q̇ − a
getTaskScalingFactor(a, b)

if {task scaling factor} > s∗ then
s∗ = {task scaling factor}
W ∗ = W , q̇∗

N = q̇N

end if

j = {the most critical joint}
Wjj = 0

q̇N,j =

{
Q̇max if q̇j > Q̇max

Q̇min if q̇j < Q̇min

if rank(JW ) < m then
s = s∗, W = W ∗, q̇N = q̇∗

N

q̇ = q̇N + (JW )
#
F (sẋ− Jq̇N )

limit exceeded = FALSE (∗outputs solution∗)
end if

end if
until limit exceeded = TRUE

considered the joint velocity limits given in the official data
sheet of Romeo. Using Algorithm 1, task errors increase when
a scale factor s < 1 needs to be applied to recover feasibility,
see Fig. 2. However, Fig. 3 shows that all hard joint velocity
limits are respected along the whole motion. While using TPM
alone, the joint velocities would violate their limits frequently.
See the accompanying video for a complete understanding.
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Fig. 1. Snapshot during Matlab simulation using Romeo.
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Fig. 2. Algorithm 1: Task errors (above) and the applied scale factor (below).
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Fig. 3. Algorithm 1: Commanded joint velocities (in blue). The red lines
represent the enforced joint limits.


