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Abstract—The next stage for robotics development is to intro-
duce autonomy and cooperation with human agents in tasks that
require high levels of precision and/or that exert considerable
physical strain. To guarantee the highest possible safety stan-
dards, the best approach is to devise a deterministic automaton
that performs identically for each operation. Clearly, such ap-
proach inevitably fails to adapt itself to changing environments or
different human companions. In a surgical scenario, the highest
variability happens for the timing of different actions performed
within the same phases. This paper presents a multi-modal action
segmentation system that operates online to specifically target
semi-autonomous assistive robotic platforms during Robotic-
Minimally Invasive Surgery (R-MIS). It provides the required
timing for the actions being performed to direct the lower-level
control of the assistant robot through supervisory control.

Index Terms—Action Recognition, R-MIS, Shared-Control
Systems

I. INTRODUCTION

The autonomous execution of a task by robots is mostly
relegated to industrial applications where robotic platforms
execute repetitive tasks with minimal to no cooperation with
humans: the focus is on executing precisely the same mo-
tions in the most efficient way when positioned in a highly
structured environment. The research in robotics, however, is
pushing for the introduction of cooperative tasks in which both
the motion accuracy and cognition level need to be robust
under any condition [1]. In medical robotics, the main effort
is nowadays spent in the development of autonomous and
semi-autonomous technologies to R-MIS. A comprehensive
study performed in [2] evaluates the impact of autonomous
technologies on medical/surgical practice and emphasises the
need of human cooperation and supervision in the future
of autonomous robotic surgeries. Among many applications
available in literature, the most relevant ones are the recogni-
tion of the different phases in an endoscopic surgery addressed
with deep neural networks [3] and the implementation of a
knowledge-based ontology approach [4]. The SARAS1 SOLO-
SURGERY platform will be a very sophisticated example of
a shared-control system: a surgeon operates remotely a pair of
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1SARAS is an EU founded project and stands for Smart Autonomous
Robotic Assistant Surgeon, details at www.saras-project.eu
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Fig. 1. Experimental setup. (a) daVinci® arm (right) and SARAS arm
developed by MedineeringTM (left). (b) same scene seen through the left
endoscope camera.

robotic laparoscopic tools (i.e. the daVinci® Surgical Platform)
and cooperates with the two novel SARAS autonomous robotic
arms inside a shared environment to perform complex surgical
procedures. The goal of the project is to substitute the assistant
surgeon next to the patient within the operating room. This
paper showcases an approach to deduce human actions from
the robotic minimally-invasive surgical scene to coordinate
a semi-autonomous robot with a human surgeon. Its main
contributions over the state-of-the-art is represented by a
multi-modal cognitive system for action segmentation that
encompasses both visual and kinematic information with the
adoption of a Temporal Convolutional Neural Network, which
allows for a better identification of actions of different duration
when compared against similar solutions.

II. ACTION SEGMENTATION

The action segmentation module has to operate within
stringent timing and performance requirements to be applied
online as a soft-sensor. Indeed, the underlying model must:

• be reliable, which can be verified by the low incidence
of false positives and negatives, and the percentage of
correctly evaluated sequences;

• be robust, which is tested under varying conditions for the
experimental setup (lighting, camera orientation, target
variation etc.)

• provide real-time evaluation for its application as an
advanced soft-sensor taking as input fast-changing sig-
nals and providing as output commands to lower-level
controllers. This requires both data buffering operations
and a small memory footprint not to hinder cyclic com-
putations.

To comply with these requirements, we chose to implement a
neural network, called EdSkResNet (Encoder-Decoder Spatial-
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Fig. 2. Neural network schema for action segmentation: the RGB and MHI images are processed simultaneously as a 4-channel enhanced frame.

Kinematic ResNet) (Figure 2), that integrates multi-modal
learning over the data available during a robotic minimally-
invasive surgical operation. It outperforms many state-of-the-
art solutions for both spatial, i.e. the instantaneous description
of the scene, and temporal information analysis. The network
is split in two halves: the Spatial-Kinematic Network anal-
yses the spatial relation of all objects in the scene through
RGB images, Motion History Images (MHI, the difference
of the frames in a time window) and kinematic trajectories
of the robots; the Temporal Convolution Network processes
a temporal filter of the intermediate processed features to
identify the various action segments. The main feature of this
network is its causal formulation as the processed features are
inserted in a circular input buffer and filtered through causal
convolution operators. Additionally, the fully-convolutional
structure improves both training and execution performance
when compared against recurrent neural network formula-
tions [5].

III. RESULTS

Validation of the action segmentation has been performed
on the SARAS setup over a custom surgical pick-and-place
training task performed by an human operator teleoperating
the daVinci® and the autonomous SARAS arm. The user is
instructed to pick up a colored ring placed in the scene, either
red, blue or green, and to bring it closer to the camera for
color identification. The robot arm, using both cognitive and
geometrical information inferred from image and kinematic
data, moves towards the ring; after grasping it, the robot
waits until the other arm releases the ring and, finally, leaves
the exchange area to deliver the ring to the corresponding
target by color. The action segmentation identifies 8 actions
being performed by the surgeon and the robot and drives the
controller for the latter. The final control action can be seen
in the attached video. An additional validation is provided in
Table I with a comparison of the result of the EdSkResNet

TABLE I
RESULTS FOR THE MEDIAN USER OF THE JIGSAWS SUTURING (%).

Algorithm Accuracy Edit Score

ED-TCN [6] 81.4 83.1
EdSkResNet 81.71 91.74

with the best-performing algorithm in literature [6] for the
JIGSAWS [7] dataset. The proposed methods improves the Ac-
curacy (percentage of correct actions) and Edit Score (number
of correct sequences, without repetition) indicate the prowess
of the model to identify the correct sequence of actions. It
needs to be specified that the method in [6] operates in a non-
causal manner as it performs non-causal temporal filtering.
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