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Abstract—As robots are becoming more pervasive and are
increasingly used in close proximity to humans and other objects
in factories, living spaces, elderly care, and robotic surgery,
planning for collision free trajectories in real-time is imperative
for safe and efficient operation. Yet, in the presence of noisy
sensors, both the robot and world state cannot be estimated
precisely. In this paper we investigate the problem of motion
planning under environment uncertainty. To this end, we first
incorporate object uncertainties in Belief Space Planning (BSP)
and derive the resulting Bayes filter in terms of the Extended
Kalman Filter (EKF) update equations. We further formulate
the collision constraint as a quadratic form in random variables,
thus computing an exact expression for collision probability. We
further validate our approach using numerical integration and
provide a comparison to other approaches.

Index Terms—Collision Probability, Belief Space Planning

I. INTRODUCTION

Belief Space Planning (BSP) and decision making under
uncertainty has been researched extensively in the past with
applications spanning a variety of areas including autonomous
navigation, multi-modal planning, and active Simultaneous
Localization and Mapping (SLAM) [1], [6], [10], [11], [15],
[17], [20], [22], [23]. Uncertainties often arise due to in-
sufficient knowledge about the environment, inexact robot
motion or imperfect sensing. Planning is therefore done in
the belief space, which corresponds to the set of all prob-
ability distributions over possible robot states. Further, the
nature of uncertain environments are such that they often
preclude the existence of collision free trajectories [2]. As
such, for safe navigation, both the robot state uncertainty and
the uncertainty in obstacle estimates need to be considered
while computing collision probabilities. [13], [16] truncate the
Gaussian state distributions to compute bounded collision-free
trajectories. [5] and [14] compute the collision probability by
marginalizing the joint distribution between the robot pose and
the obstacle. However, since there is no closed-form solution
to this formulation, an approximation is assumed. In [12],
an approximation is computed using Monte Carlo Integra-
tion (MCI), which is nonetheless computationally intensive.
Another relevant method that uses Monte Carlo approach
and is real-time compatible is Monte Carlo Motion Planning
(MCMP) [8]. In [2], a Gaussian Process (GP) based approach
is used to learn motion patterns (a mapping from states to tra-
jectory derivatives) to identify possible future obstacles trajec-
tories. [3] focus exclusively on obstacle uncertainty. Uncertain
obstacles are modeled as polytopes with Gaussian-distributed
faces in [19]. Risk contours map are considered in [7], [9]
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to obtain safe paths with bounded risks. Formal verification
methods have also been used to construct safe plans [4], [18].
Yet, most approaches leverage’s Boole’s inequality to compute
collision probability along a path by summing or multiplying
the probabilities along different waypoints in the path. Such
approaches tend to be overly conservative. Moreover, in most
approaches, the collision probability computed along each
waypoint is an approximation of the true value. On the one
hand, such approximations can overly penalize paths and could
gauge all plans to be infeasible. On the other hand some
approximations can be lower than the true collision probability
values and can lead to synthesizing unsafe plans.

Localization is also a key aspect for safe and efficient
navigation. However, most approaches assume that landmarks
are known with high certainty. For example, given the map
of the environment, while planning for future actions the
standard Markov localization does not take into account the
map uncertainty (that is, landmark locations are assumed to
be perfect). However, this might not be true in practice. For
example, landmarks locations obtained from a SLAM session
may be uncertain. This landmark uncertainty directly translates
to the fact that the viewpoints from which the landmark can
be observed are uncertain. Therefore, one can only reason in
terms of the probability of observing the object from the con-
sidered pose or the viewpoint. This results in a probability dis-
tribution function for the viewpoints, whose mean corresponds
to observing the object with highest probability. Consequently,
not considering this uncertainty can wrongly localize the robot,
leading to inefficient plans causing catastrophes. We will use
the term object uncertainty to refer to the notion of uncertainty
in landmark location.

II. OBJECT UNCERTAINTY

We define the object space @) =
{00 is an object, and 1 < i < |O|} to be the set of
all objects in the environment. Given an initial distribution
p(Xo), and the motion and observation models p(xy|Xx—1,ux)
and p(zx|xy, OL), the posterior probability distribution
at time k is the belief b[xz] and can be written as
p(Xk|zk, Ok, Zo:—1, Uo:—1), Where O is the object observed
at time k, zo.x—1 = {zo,..,Zx—1} is the sequence of
measurements up to k — 1 and wg.x—1 = {ug,...,ux_1} is
the sequence of control up to & — 1. Using Bayes rule and
theorem of total probability, b[x;] can be expanded as

p(Xk|Zk, O, Z0:k—1, Uo:p—1) =
np(zklxk,Oi)p(O?;IXk)/ P(Xk[Xk—1, 0 _1)b[Xe_1] (1)
Xk —1

where n = 1/p(2zy|2o:x—1,U0:k—1) is the normalization con-
stant. The term p(O},|xx) denotes the probability of observing



the object O} from the pose Xj, and models the object
uncertainty. This term can be modeled given the environment
and since we consider a Gaussian parametrization of the
belief, in this work we model the object distribution as a
Gaussian p(O}|xy) ~ N(poi, o), where po; is the mean
viewpoint/pose that corresponds to the maximum probability
of observing O} and 2p; 1s the associated covariance. The
EKF is used for state estimating and the posterior mean
and covariance can be computed as (notations and complete
derivation can be found in [21])

p = i + Ky (zi — h () + Z@g%(uog — i) (2)
S = (I = KpHy) Z1(Zk + 2oi ) oy (3)

We note that when no object uncertainty is considered
the update step of the standard EKF gives pr = pr +
Ky (zi; — h(fig)) and 3y = (I — Ky Hy,) Z,. The additional
term in (2) rightly adjusts the mean p accounting for the fact
that the object location is uncertain. Similarly, the additional
terms in (3) account for the object uncertainty and scale the
posterior covariance accordingly.

III. COLLISION PROBABILITY

Let R represents the collection of points that form the rigid-
body robot. Similarly, let S represent the set of all points
occupied by a rigid-body obstacle. Thus, a collision occurs if
RNS # {¢}. In this work we assume spherical geometries for
R and S with radii 7, and s, receptively and we denote the
corresponding center of masses as by Xx; and sy, receptively.
By abuse of notation we will use x;, and s; equivalently to R
and S. The collision condition will be written in terms of the
center of mass as Cy, s, : RNS # {¢}. Let us now consider
an obstacle at any given time instant, distributed according to
the Gaussian s ~ N (usk,Esk), where pg, represents the
mean and Y, the uncertainty in the estimation of the object.
Then the probability of collision is given by

P (Cxps) = / / I (Xp, k)P (X5, Sk) (4)

where I. is an indicator function that evaluates to 1 when
R NS # {¢} and otherwise 0.

[5], [14] approximate the integral in (4) as Vp(xg,sk),
where V' is the volume occupied by the robot. For computing
p(Xk,Sk), they first assume a distribution centered around the
obstacle with the covariance being the sum of the robot and
obstacle location uncertainties. Then the density p(xg,sk) is
computed by assuming a constant robot location. Du Toit and
Burdick uses the robot center, whereas in [14] the maximum
density on the surface of the robot is used to obtain an upper
bound. However, the approximation is valid only when the
robot radius is negligible and the obstacle size is relatively
small compared to their location uncertainties.

To do away with this approximation, we formulate the above
problem by considering an alternative approach. Since the
robot and the obstacles are assumed to be spherical objects,
the collision constraint can then be written as

Ixx — Sk||2 < (r1 +s1)? )

(@) (b) (©)

Fig. 1: (a) The robot state is known perfectly, however the obstacle
location is uncertain. (b) Robot state uncertainty is considered (con-
tours in blue). (c) A point-like robot and obstacle are considered.

where (as before) x; and s; are the random vectors that denote
the robot and obstacle pose, respectively. Let us denote by
w = X;, — Sy, the difference between the two random variables.
Then we know that w is also a Gaussian, distributed as w ~
N (uk — s, , 2k + Zsk). The collision constraint in (5) can
now be written as

y :||w\|2 =wlw < (r + 51)2 (6)

where y is a random vector distributed according to the squared
Loy-norm of w. Now, given the probability density function
(pdf) of y, the collision constraint reduces to solving the

integral (r1+s1)2
P(ka,sk) :/ p(y) (7N
0

where p(y) = P,(y = y) is the pdf of y. It is noteworthy that
the above integral is the cumulative distribution function (cdf)
of y, that is, P (Cy, s, ) = Fy(y), where F;(y) denotes the cdf.
Moreover, the left hand side of (6), is a quadratic form in the
random variables of w and the cdf is computed as

_ VRS LA

The above infinite series converges within the first few terms
and we refer the readers to [21] for the definition of a quadratic
form in random variables, its cdf and the proof of convergence.
Further, it can be shown that to achieve a truncation error £ <
¢, for an e—safe conﬁgurationl, k=0 (log %) iterations
are required’. We note that for each obstacle, the complexity
is increased by this factor. As shown in the next section, the
computation time is of the order of few milliseconds and hence
the approach can be used for fast online planning.

IV. COMPARISON TO OTHER APPROACHES

In this section we compare our approach for collision
probability computations with that of Park ef al. [14] and [5].
Numerical integration of (4) gives the exact value and we
use the same to validate our approach. Three different cases
are considered (see Fig. 1). The solid green circle denotes
an obstacle of radius 0.5m and its corresponding uncertainty
contours are shown as green circles. The solid blue circle

A robot configuration X, is an e—safe configuration with respect to an
obstacle s, if the probability of collision is such that, p (Cx,s) <1 — .
2y = (r1 + 51)2, p depends on robot and obstacle state covariance.



Case Algorithm CP Computation time (s) | Feasible
Numerical integral | 4.62% 0.8896 + 0.0356 Yes
@ [5] 5.84% 0.0026 + 0.0003 Yes
[14] 33.26% 0.2367 + 0.2081 No
Our approach 4.61% 0.0232 + 0.0024 Yes
Numerical integral | 8.25% 1.2309 £ 0.0298 Yes
(b) [5] 14.20% 0.0021+ 0.0001 No
[14] 36.31% 0.2108 + 0.3067 No
Our approach 8.22% 0.0208 + 0.0021 Yes
Numerical integral | 14.82% 1.2450 £ 0.0301 No
© [5] 0.46% 0.0019 + 0.0004 Yes
[14] 0.61% 0.3145 + 0.4610 Yes
Our approach 14.83% 0.0271 + 0.0087 No

TABLE I: Comparison of collision probability (CP) approaches.

denotes a robot of radius 0.3m with the blue circles show-
ing the Gaussian contours. We define a collision probability
threshold of 0.1 and the collision probability values and the
computation times are provided in Table 1. In Fig. 1(a), the
robot position known with high certainty and our approach
computes collision probability as 4.61% and hence the given
configuration is feasible. The numerical integral provides the
actual value and as seen in Table I, it is computed to be
4.62%, thus proving the exactness of our method. However,
the collision probability computed as given in [14] is 33.26%
(almost seven times our value), predicting the configuration to
be unfeasible. The approach in [5] also gave a feasible value
of 5.84%. In Fig. 1(b), there is robot uncertainty along the
horizontal axis and the collision probability computed using
our approach is 8.22%. The actual value is computed to be
8.25%. The values computed using the approaches in [14], [5]
are 36.31% (4.5 times our value) and 14.20%, respectively.
The approach of Park et al. [14] and [5] assumes that the
robot radius is very small. We also compute the collision
probabilities for a robot and an obstacle with radius 0.05m
each, where the robot and the obstacle are touching each other
(Fig. 1(c)). The obstacle location is also much more certain,
with the uncertainty reduced by 97% as compared to cases in
Fig. 1(a),(b). Actual value obtained using numerical integral
is 14.82%. The probability of collision computed using our
approach is 14.83%, rightly predicting it to be unfeasible. The
approach in [14] computed the value as 0.61% and using [5] a
value of 0.46% is obtained. Thus, using the approaches in [5],
[14] would lead to collision as it predicts the configuration to
be feasible. Our approach computes the exact probability of
collision and outperforms the approaches in [5], [14].

V. CONCLUSION

We present a BSP framework that incorporate object un-
certainties while localizing the robot and derive the EKF
update equations for the same. Unlike previous approaches
that compute approximate upper bounds we derive an exact
expression for computing the collision probability. We val-
idate our approach using numerical integration and provide
comparison to other approaches.
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