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Abstract—We propose a shared control and active percep-
tion framework combining the skills of a human operator in
accomplishing complex tasks with the capabilities of a mobile
robot in autonomously maximizing the information acquired
by the onboard sensors for improving its state estimation. The
human operator modifies at runtime some suitable properties of
a persistent cyclic path followed by the robot and, at the same
time, the path is concurrently adjusted by the robot with the aim
of maximizing the collected information. This combined behavior
enables the human operator to control the high-level task while
the robot autonomously improves its state estimation. The user
is also provided with guidance feedback pointing in the direction
that would maximize an information metric. We evaluated our
approach in human subject studies, testing the effectiveness of
including the active perception in a task priority framework, as
well as of providing a user feedback (either visual or haptic).

Index Terms—Human-Centered Robotics; Reactive and Sensor-
Based Planning; Optimization and Optimal Control.

I. INTRODUCTION

In this paper, we consider a shared control framework
involving a mobile robot traveling along a desired trajectory
for exploration/navigation purposes, with the shape/location of
the trajectory being partially controlled by a human operator.
As in typical shared control scenarios [1]–[3], we envisage a
division of roles between the robot and the human operator.
The mobile robot is equipped with onboard sensors and has
enough autonomy for implementing lower-level control actions
for addressing some “local” constraints/requirements that would
otherwise be hard to handle by the human operator. The latter
is in charge of providing higher-level behaviors such as steering
the mobile robot towards areas of interest. The operator can
provide commands to the mobile robot by acting on an input
device and, when haptics is included (as we do in this work),
she/he can also receive a force feedback informing about what
actions the robot would like to execute. The operator is then
left with the choice of whether (and to what degree) follow
the feedback suggestions, thus blending her/his higher-level
goals with the needs of the robot.

This idea is instantiated in this paper by considering a
fundamental task for any mobile robot navigating in an

environment: increase the information quality acquired by the
robot onboard sensors, needed a proper robot state estimation.

Thus, we propose in this paper to fuse the localization
capability of an active perception framework with the high-
level capabilities of a human in fulfilling a task (e.g., exploring
an environment) through a shared control approach.

II. PROPOSED APPROACH

The problem described in Section I can be formulated as:
Problem 1 (Online Shared Active Sensing Control): For all

t ∈ [t0, tf ], find the optimal location of the control points

x∗
c(t) = argmax

xc

‖Gc(s0, sf )‖µ ,

s.t.

1) qγ(xc(t), st)− q̂(t) ≡ 0, (state coherency)
2) fl(xc(τ), sτ ) 6= 0 , ∀ τ ∈ [t, tf ], (flatness regularity)
3) L(xc(t), st, sf ) = Ld − Lt, (fixed length)
4) usr(xc(t), s)− usrd ≡ 0, (user’s task)

where Lt = L(s0, st) =
∫ st
s0
v(xc, σ) dσ represents the length

already traveled by the robot on [t0, t] (and, analogously,
L(xc(t), st, sf ) is the length of the trajectory in the future
interval [st, sf ]). Finally, v(xc, σ) = ‖∂γ(xc, s)/∂s‖2.

In particular, the cost function is aimed at maximizing the
Shatten norm of the Constructibility Gramian (CG), that [4]
proved it is connected to the maximum estimation uncertainty.
In fact, the latter is minimized (thus maximizing the estimation
performance) if the Shatten norm of the CG is maximized.

Regarding the constraints, the state coherency one is for
ensuring that the optimization over the future path is coherent
with the current state estimate; the flatness regularity constraint
is for avoiding intrinsic singularities introduced by the flatness
assumption that we performed for avoiding to integrate the
robot model over the trajectory, thus saving computational
time (important since we need to solve Problem 1 in real-
time). Moreover, the fixed length constraint is for guaranteeing
well-posedness of Problem 1, since ‖Gc‖ could be unbounded



from above if the robot has an unlimited path length. Finally,
the user’s task allows the human operator to modify some
geometric characteristics (e.g. a specific point, the centroid,
the area, and so on) of the planned path for the robot.

It is important to underline that, according to the Problem 1,
the user’s commands have higher priority w.r.t. maximizing
the Gramian norm since the operator must have full control
over the geometric properties of the path.

Moreover, we also introduce a guidance user feedback in
order to make her/him aware about the possibility of increasing
the amount of information collected by the robot along the
future trajectory for reducing the estimation uncertainty. In
particular, the feedback is computed as

fusr = βJ4(IκN×κN − AN4)∇xc
‖Gc(−∞, sf )‖µ . (1)

with J4 = ∂usr(xc,σ)
∂xc

, AN4 is the projector in the null-space
of the four tasks in Problem 1 and β > 0 is a tunable gain.

The feedback fusr could be conveyed in different ways,
e.g., as an arrow on a screen or as a kinesthetic force provided
by a grounded haptic interface (both in the next Section).

III. EXPERIMENTAL RESULTS

We tested our proposed shared control approach with a
unicycle robot that is equipped with a sensor that is able to
measure the distance w.r.t. the four black landmark in Figure 1.
We consider four experimental modalities

(N) The closed B-Spline trajectory is calculated by solving
Problem 1 where the CG maximization task is removed.
In other words, the quality of the robot state estimation
completely depends on the trajectory chosen by the human
operator. Also, the user receives no feedback;

(CG-N) The closed B-Spline trajectory of the robot is generated
by solving Problem 1, including the CG maximization
task. However, the user receives no feedback on how to
improve the estimation of the robot state.

(CG-V) As CG-N, but here the user receives visual guidance
on how to move the considered trajectory point by means
of an arrow defined by (1);

(CG-H) As CG-V, but this time the user receives haptic guidance
on how to move the considered trajectory point, by means
of a kinesthetic force, defined by (1) and provided via the
Omega.6 haptic interface.

In Figure 1 the operator is asked to teleoperate the mobile
robot for activating four electrical switches – in less than 90
seconds – in a given order by controlling a point (the green dot
in Figure 1) on the closed B-Spline defining the trajectory of
the mobile robot. The next switch to be activated is indicated
in red while the already activated switches are marked in green.
A switch is activated when the real robot passes through the
center of its tile. However, the screen only shows the estimated
robot state to the human operator (see Fig. 1(b)).

Ten participants took part to our experiment (1 woman, 9
men; age 24–37 years old). Users performed one randomized
repetition of the task per experimental condition, yielding 40
trials. Operators were asked to complete the task as fast as
possible, taking however into account the received feedback.

(a) t = 0 s (b) t = 30 s

(c) t = 60 s (d) t = 90 s

Fig. 1. Power grid activation scenario. The users have to activate four switches
in a certain order by having the real robot passing over them.
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Fig. 2. Power grid activation results. Mean and 95% confidence interval of
(a) completion time, and (b) minimum eigenvalue of P−1 (from the EKF).

The reported results show the effectiveness and viability
of the proposed shared control active perception technique.
Using the active perception routine (CG-N, CG-V, CG-H) to
maximize the information acquired by the robot significantly
improves the performance of both tasks w.r.t. not considering
the optimization of CG (N) (see Fig. 2).

The above-mentioned results confirm – both quantitatively
and qualitatively – the importance of including an active percep-
tion term and an haptic feedback for teleoperated tasks. A video
of the experiments is available at https://youtu.be/yGL7i48ZisA.
Additional details can be found in [5].
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