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Abstract—We propose a novel method to implement obstacle
avoidance within the Dynamic Movement Primitives (DMPs)
framework. The proposed method is able to deal with volumetric
obstacles. Moreover, being dependent on the velocity of the system
(and not only on its position), this new method is able to achieve
smooth behaviors.

Index Terms—Obstacle Avoidance, Dynamic Movement Prim-
itives, Learning from Demonstration

I. INTRODUCTION

In last years, Learning from Demonstrations (LfD) ap-

proaches (such as Gaussian Mixture Models [1] and Extreme
Learning Machines [2]) have been developed in order to
replicate human gestures in robotics. A widely used LfD
technique is the Dynamic Movement Primitives (DMPs) frame-
work [3], [4]. DMPs permit to learn a trajectory from just
one demonstration by encoding the trajectory in a system
of second-order linear Ordinary Differential Equation (ODE),
where a forcing term is learned as a linear combination of
predefined time-dependent functions. Obstacle avoidance for
DMPs has been successfully treated for point-like obstacles
(e.g. [4] and [5]). On the other hand, volumetric obstacle
avoidance has been treated in our previous work [6] using
potential functions.
Here, we propose a new potential function that improves our
previous method [6] by extending it so to take into account
also the velocity of the system (and not only the position). This
allow to achieve a smoother obstacle avoidance behavior.

In Section II we recall the DMP’s theory; in Section III
we present our proposed method for obstacle avoidance; in
Section IV we test it; and in Section V we present the
conclusions.

II. DMP THEORY

DMPs is a framework for trajectory learning. It is based
on an Ordinary Differential Equation (ODE) of spring-mass-
damper type with a forcing term. They consist of the following
system of Ordinary Differential Equations:

v=K(g—x)—Dv-—K(g—x¢)s+ Kf(s) + ¢(x,v)
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Fig. 1: Depiction of the angle 6 in (2).

Vectors x,v € R? are, respectively, the position and ve-
locity of the system; and x(,g € R? are, respectively, the
starting and goal positions. Matrices K, D € RiXd are,
respectively, the elastic and damping terms of the system.
Both are diagonal matrices, K = diag(Ky, Ks,..., Ky),
D = diag(D1, Do, ..., D,), and satisfy the critical damping
relation D; = 24/K;, so that the un-perturbed system, i.e.
when f = 0, converges as fast as possible to the unique
equilibrium (x,v) = (g,0). Scalar 7 € Ry is a temporal
scaling factor which can be used to make the execution of the
trajectory faster or slower. Function f : R — R is the forcing
term, expressed in term of basis functions. Scalar s € (0, 1]
is a re-parametrization of time ¢ € [0, governed by the so
called canonical system 75 = —as, where @ € Ry and the
initial state is s(0) = 1.

Function ¢ : R? x R — R? is the perturbation term used to
deal with obstacle avoidance. Intuitively, it can be seen as a
term that ‘pushes’ the system away from the obstacle. In the
next Section, we present our new formulation of function ¢.

III. NEW METHOD FOR OBSTACLE AVOIDANCE

To define our perturbation term, we start by defining the
concept of isopotential as any function C : R — R that
vanishes on the surface of the obstacle and increases as the
distance from the obstacle increases. An example in R?® of

Zisopotential is the function
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that vanishes on a pseudo-ellipsoid of center X = [&1, &a, 3|7
and semi-axis (¢1, /42, (3).
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(a) Mesh plot. (b) Isocontour plot.

Fig. 2: Example of the dynamic potential Up(x,v) given in
(3) for an ellipse in R2. In both figures, the potential has been
cropped at the value 1 for display purposes..

Fig. 3: Pick-and-place task with the Panda robot.

Next, we define the angle 6, depicted in Figure 1, as

(VxC(x),v)
cosl = —————F—. (2)
IV CE) vl
At this point, we define the dynamic potential
_ gl s
U, v) = A(—cos ) oLIE) ?ff) € (5, R
0 if 6 € [0, 7]

where A, 5,7 € R, are constant gains. Figure 2 shows
an example the potential. This potential has three major
advantages: 1. The magnitude of the potential decreases with
the distance of the system from the obstacle; 2. The magnitude
of the potential increases with the velocity of the system ||v||;
3. The magnitude of the potential decreases with the angle
between current velocity direction and the direction towards
the obstacle, and is null when the system is going away from
the obstacle.

Finally, we define the perturbation term as the gradient, w.r.t.
the system’s position x of Up:

p(x,v) = =V Up(x,V).

IV. RESULTS

We test our obstacle avoidance framework with a Panda
industrial manipulator. The task consists in grasping a ring
and releasing it onto the same colored peg, while avoiding the
other pegs and the base. The steps of the task are shown in
Figure 3.

The task consists of two movements, namely
move_to_ring in which the Panda has to reach the
ring, and move_to_peqg in which the robot carries the ring
over the peg. Both gestures are modeled with DMPs with
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(a) move_to_ring. (b) move_to_peg.

Fig. 4: Obstacle avoidance with the Panda robot.

null forcing term f = O so that the system converges toward
the goal in a straight-line movement.

The pegs and the base are modeled as obstacles using pseudo-
ellipsoid setting nqy = ny = 1, and ng = 2 in (1). When the
ring is grasped, the radius of the pegs is enlarged (as can be
seen in Figure 4b) so that neither the end-effector of the robot
nor the ring collides with the pegs.

Figure 4 shows the execution. For the move_to_ring ges-
ture (Figure 4a), the DMP is not perturbed by the potential,
since there is no risk of collision. On the other hand, the
trajectory for the move_to_peg movement is perturbed by
the presence of the obstacles.

V. CONCLUSIONS

In this work, we presented a novel method for obstacle
avoidance within the DMPs framework. The proposed method
models the obstacle with a potential field that depends both
on the distance from the obstacle and the angle between the
system’s velocity and the direction towards the obstacle. This
allows the potential to be null when the system has no risk
of collision with the obstacle. Thus, when there is no risk of
collisions, the trajectory is not influenced by the presence of
obstacle.
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