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Abstract—The use of robots in minimally invasive surgery has
improved the quality of standard surgical procedures. So far, only
the automation of simple surgical actions, or unreliable black-box
models for automation, have been investigated by researchers.
In this paper, we propose a novel framework to implement
surgical task automation with multiple actions, combining logic-
based explainable task planning, adaptive motion planning and
semantic interpretation of sensors. The framework is validated on
different versions of the standard surgical training ring transfer
task.

Index Terms—Autonomous robotic surgery, logic program-
ming, dynamic movement primitives

I. INTRODUCTION

Autonomous robotic surgery can improve the safety and
patient recovery time, and reduce hospital costs and surgeon
fatigue. Recent research has investigated the automation of
basic operations in surgery [1], without however addressing
adaptability in dynamic scenarios. Statistical models are also
used [2], but they need a huge amount of training data and
guarantee poor explainability and reliability. In this paper, we
address the problem of the automation of a training surgical
task, the ring transfer, with the da Vinci® robot from Intuitive
Surgical (setup in Figure 1). The task consists of placing rings
on the same-colored pegs, using patient-side manipulators
(PSMs) of the da Vinci®. Multiple actions must be coordi-
nated according to dynamic environmental conditions (e.g.,
reachability regions for PSMs) which mimic variations in the
patient’s anatomy. We propose a framework which integrates
Answer Set Programming (ASP) for explainable logic task
planning, and Dynamic Movement Primitives (DMPs) for
trajectory learning and obstacle avoidance in real time.

II. THE FRAMEWORK

A scheme of our framework is shown in Figure 2. The
task reasoner implements an ASP program defining the entities
and specifications of the task using Boolean variables (atoms)
and logical rules. For the ring tranfer task, entities are the
PSMs, rings and pegs with their color (red, green, blue,
yellow and grey), environmental conditions (e.g., status of
gripper) and actions (e.g., moving to a ring or grasp). Rules
match actions to environmental pre-conditions and effects, and
define executability constraints (forbidden operations). Given
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Fig. 1: The setup for the ring transfer task. The red dashed line defines
reachability regions for the two arms.

Fig. 2: The proposed framework for surgical task automation. Functional
modules of the framework are highlighted in red, while arrows show the
stream of information between modules, the real system and an external
human observer.

this task description, an ASP solver verifies logical rules and
returns the set of actions to the goal (with increasing discrete
time step). Actions and ASP encoding are in plain English,
hence they can be easily monitored by a human observer.

Each action is described in the low-level control module
using DMPs [3]. DMPs model the Cartesian trajectory of the
end-effector as:{

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s)

τ ẋ = v.

where x,v ∈ R3 are, respectively, position and velocity of the
end-effector. K,D ∈ R3×3

+ are diagonal matrices guaranteeing
critical damping for goal convergence. g,x0 ∈ R3 are,
respectively, the goal and starting position, and τ ∈ R+ is
a parameter to tune the speed of the trajectory. s ∈ R+ is a
re-parametrization of time governed by τ ṡ = −αs, α ∈ R+,
with initial condition s(0) = 1. Function f : R→ R3 is a per-



turbation term, approximated as a weighted sum of pre-defined
basis functions. Weights are learned with convex optimization
from demonstration trajectories, and they preserve the shape
of the trajectory when x0 and g are changed. Additional
perturbation terms are added for obstacle avoidance [4].

The situation awareness (SA) module is in charge of the
semantic interpretation of data from sensors (poses of objects
from the RGB-D camera and robot kinematics) for monitoring.
It computes environmental atoms for ASP, checks failure con-
ditions which trigger re-planning / motion stop, and computes
target poses for DMPs.

III. EXPERIMENTS

The da Vinci Research Kit1 is used to control the robot.
Clingo [5] is used for ASP solving. The communication
between modules is implemented with ROS. We use an
Intel RealSense d435 camera, which has higher depth range
with respect to the standard surgical endoscope with smaller
baseline. We perform hand-eye calibration with a custom
calibration board as in [6], reaching a state-of-the-art precision
of 1.6 mm in pose detection, comparable with the intrinsic
accuracy of the da Vinci®. DMPs are learned from 15 human
executions of the task with all 4 rings requiring transfer, using
the approach presented in [7]. Figure 3 shows the learned
Cartesian DMP for the action of moving to ring. We validate
our framework in four unconventional scenarios (shown in the
attached video) involving failure during transfer and anoma-
lies, such as occupied colored pegs and simultaneous operation
with the two PSMs. Figure 4 shows the ASP planning time
in 1000 simulated scenarios with four rings on different pegs,
guaranteeing computation within 10 s even for longer plans
(most complex scenarios).

Fig. 4: Plan computation time with ASP in 1000 simulated scenarios. Standard
deviation of plan computation time for executions of the same length is also
shown.

IV. CONCLUSION

In this paper, a novel framework for the autonomous
execution of surgical tasks was presented, applied to the
benchmark training ring transfer task for surgeons. This is
the first fundamental step to address issues of autonomous
robotic surgery, including failure recovery, motion adaptation
and dexterity replication with DMPs, explainable logic plan

1https://github.com/jhu-dvrk/sawIntuitiveResearchKit
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Fig. 3: a) The set of Cartesian trajectories for the gesture of moving to a
ring, for both PSMs; b) trajectories after roto-dilatation, to start at the origin,
x0 = 0 and end at the vector of ones, g = 1 for batch learning. The learned
DMP is shown in red dashed line.

generation, and situation awareness. In the future, we will
test the standard surgical endoscope and we will improve the
repeatability of the system implementing visual servoing, for
comparison with human execution.

REFERENCES

[1] S. Sen, A. Garg, D. V. Gealy, S. McKinley, Y. Jen, and K. Goldberg,
“Automating multi-throw multilateral surgical suturing with a mechanical
needle guide and sequential convex optimization,” in 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2016,
pp. 4178–4185.

[2] R. Muradore et al., “Development of a cognitive robotic system for simple
surgical tasks,” Int J of Advanced Robotic Systems, vol. 12, no. 4, p. 37,
2015.

[3] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-inspired
dynamical systems for movement generation: automatic real-time goal
adaptation and obstacle avoidance,” in Robotics and Automation, IEEE
International Conference on. IEEE, 2009, pp. 2587–2592.

[4] M. Ginesi, D. Meli, A. Calanca, D. Dall’Alba, N. Sansonetto, and P. Fior-
ini, “Dynamic movement primitives: Volumetric obstacle avoidance,” in
2019 19th International Conference on Advanced Robotics (ICAR), Dec
2019, pp. 234–239.

[5] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
S. Thiele, “A user’s guide to gringo, clasp, clingo, and iclingo,” 2008.

[6] A. Roberti, N. Piccinelli, D. Meli, R. Muradore, and P. Fiorini, “Im-
proving rigid 3d calibration for robotic surgery,” IEEE Transactions on
Medical Robotics and Bionics, pp. 1–1, 2020.

[7] M. Ginesi, N. Sansonetto, and P. Fiorini, “Dmp++: Overcoming
some drawbacks of dynamic movement primitives,” arXiv preprint
arXiv:1908.10608, 2019 (unpublished).

https://github.com/jhu-dvrk/sawIntuitiveResearchKit

	Introduction
	The framework
	Experiments
	Conclusion
	References

