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Abstract—In this contribution, we present our research line on
Deep Reinforcement Learning approaches for robot navigation,
in particular: Target-Driven Visual Navigation and Visual Active
Tracking. We assess our methods capabilities in several chal-
lenging scenarios and in a number of environments previously
unseen during training. Finally, we also prove that they can be
effectively deployed in real-world settings on real platforms.

Index Terms—Robot Navigation, Learning for Robotics, Com-
puter Vision for Robotics

I. INTRODUCTION

A. Target Driven Visual Navigation

TARGET-DRIVEN visual navigation (TDVN) is a long-
standing goal in the robotics community (Fig. 1a). A

naive way to approach this problem is to combine a classic
navigation system with an object detection module. However,
map-based approaches [1] assume the availability of a global
map of the environment, while SLAM algorithms [2] are not
still specifically designed for target-driven visual navigation.

For these reasons, map-less methods [3], [4] have proven to
be much more suitable for this task. A widespread approach
is to learn complex control policies by using Deep Reinforce-
ment Learning (DRL), which is also successfully applied in
many other control applications [5]. Unfortunately, current
methods are limited to consider as goals specific scenes or
objects with which the model is trained [3], [4]. Therefore, in
practice, it is still necessary to train, or at least fine-tune, the
agent for every new object and environment.

To avoid that, we design a novel DRL based architecture
composed by two main networks: the first, the navigation
network, with the goal of exploring the environment and
approaching the target; the second, the object localization
network, with the aim of recognising the specified target in
the robot’s view. They are exclusively trained in simulation,
and no single real image is used. Finally, we show that our
algorithm directly transfers to new unknown environments,
even much larger than the ones used during training, and, most
importantly, also to real ones with real targets.

B. Visual Active Tracking

Most of the works in Visual Tracking (VT) focus exclusively
on tracking objects and/or people in pre-recorded videos [6]
or, in general, assume that the target is always within the field

(a) (b)

Fig. 1. (a) The target-driven visual navigation task. The agent has to explore
an environment to reach a user specified target. The only inputs it receives are
the visual frames from its first person view and an image of the goal. (b) The
visual active tracking task. The goal of the tracker is to maintain the target
(marked in green) within its field of view by performing motion maneuvers.

of view of a fixed camera, whose position cannot be adapted
to the target motion.

On the contrary, we focus on the more challenging task of
Visual Active Tracking (VAT) [7], [8], in which the tracker has
to actively search for and track a specified target (Fig. 1b).

A viable possibility is to separate the component that
identifies the target in the images from that one responsible for
planning the robot motion. However, the non-trivial problem of
combining the two components remains. For this reason, more
recent works [7], [8] propose the use of DRL algorithms to
address the problem in an end-to-end manner.

Since the majority of these approaches consider only dis-
crete actions policies, we propose a novel DRL-based archi-
tecture for VAT in continuous action spaces, which, even if
trained with synthetic data only, can be effectively used in
real scenarios with physical robots.

II. APPROACHES AND TASKS DETAILS

To train our models we build synthetic environments by
using the photorealistic graphics engine Unreal Engine 4
(UE4)1, which allows to design and customize complex 3D
worlds. The environments for TDVN consist of 3D mazes
where the agent and the goal are randomly placed, while
the ones for VAT are large empty rooms, within which both
the tracker and the target are positioned. Since our methods
are both trained in simulated environments only, in order to

1https://www.unrealengine.com



achieve generalization also to real world contexts, we apply
domain randomization [9] to our synthetic scenarios.

A. Target Driven Visual Navigation

The TDVN problem consists in finding the shortest se-
quence of control actions to reach a specified target, using
only visual inputs. Our goal is to design an agent able to find
that sequence directly from pixels.

The observation consists of the current RGB frame from the
agent point of view and the image of the target to be reached.
Both inputs are fed into the architecture, which consists of
two different networks. The first, i.e. the object localization
network, has the objective of comparing the two images and
locate the target. The second, i.e. the navigation network, is
used to learn exploration strategies to solve complex mazes.

The overall training is divided in two completely indepen-
dent phases, one for each network. The object localization
network training is posed as a similarity metric learning
problem. We use our dataset collected in simulation, whose
samples consist of triplets of images, each containing: the
picture of the goal, an image in which the goal is visible and
an other one in which it is not. The navigation network is
trained via DRL using IMPALA [10].

B. Visual Active Tracking

The objective of an autonomous robot that performs VAT,
referred to in the following as tracker, is to recognize and
actively track a predefined, and possibly moving, target, by
using only visual inputs. In particular, in our setting, the
tracker is free to move along the X and the Y axes of a
three-dimensional space and to adapt its orientation to keep
the target in the field of view of its camera (we assume it
mounted in the front of the robot).

When an episode starts, the tracker has first to look around
to find the target, since it can also spawn outside its initial field
of view, then it can start to track it. The tracker action space is
continuous. At each timestep t, it produces two different and
independent real valued actions, aρt and aθt , which represents
the translational and the angular speeds, respectively.

III. EXPERIMENTS

A. Target Driven Visual Navigation

To measure the performance of our system in unseen
environments, we make two types of tests in simulation.

1) Exploration Experiment: In this experiment, we place
the agent in the center of a 20 × 20 maze, which is much
larger than the 3× 3 mazes in which it is trained. We give it
180 seconds to explore it, and at the end of the episode, we
measure the percentage of the maze it has discovered.

2) Target-driven Experiment: In this second experiment, we
place our agent in a 5× 5 maze, which ends in a room with 3
different objects, including the target. An episode ends when
the agent reaches the target or when 90 seconds are elapsed.

To test our model performance in real settings (Fig. 2a, 2b),
we build 7 different 4×4 mazes, both indoor and outdoor. As
for the experiments in simulation, we test both the exploration
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Fig. 2. Examples of (a) indoor and (b) outdoor mazes. In these two settings,
the backgrounds are completely different, especially compared to those seen
during training. (c) Two images captured from the recording camera (left) and
the tracker robot point of view (right) during the real world experiments.

and the target detection capabilities of our model. In real
settings, we run a total of 84 experiments, in which we
measure our agent performance.

B. Visual Active Tracking

With the experiments, we want to asses our approach
generalization capabilities and its robustness in real conditions.
To this aim, we deploy our algorithm, without any kind of
fine-tuning, in an indoor environment on a real robot (Fig.
2c). Both the tracker and the target robots can perform the
same actions as their simulated counterparts. The former is
controlled by our model residing in a remote host, while the
latter is manually controlled.

Although our methods exhibits lower performance than
those in simulation, it is still able to achieve remarkable results
also in a real world environment. It should be noticed that this
test scenario significantly differs from the simulated ones in
terms of visual appearance. In particular, it is characterized by
various objects, people, textures and lightning conditions that
are completely absent in the training environments. Despite
that, the robot is still able to recognize and locate the target.
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