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Abstract—This paper presents a system composed of Pepper

robot that supports an RGB-D camera and an inertial device

called SensHand. The fusion of multi-modal data aims to improve

the recognition of gestures. Twenty users performed five activities

of daily livings (i.e. Having Lunch, Personal Hygiene, Working,

House Cleaning, Relax). Each activity was composed of at least

two ”basic” gestures for a total of 10 gestures. The acquisition of

visual data was performed laterally and frontally to mimic real

conditions. Acquired data were analysed off-line considering dif-

ferent combinations of sensors to evaluate how the sensor fusion

approach improves the recognition abilities. The results show a

significant improvement of the accuracy when fusing camera and

sensors data, i.e. 0.81 for the whole system configuration when

the robot is in a frontal position from the user and 0.75 when

the robot is in a lateral position.

Index Terms—Gesture recognition, Human-Robot Interaction,

Inertial sensor, Social robot

I. INTRODUCTION

Nowadays social robots permeate our daily life such as
workplaces and hospitals. They should recognize what a
human being is doing to properly react. For this reason, it is
very important that social robots gain the ability to distinguish
these simple gestures even when part of daily living ’scenes’.
According to literature, the most commonly used sensors in
gesture recognition are RGB-D cameras and inertial wearable
sensors [1]. The former are widely available and cost effective.
They provide rich texture information of the scene and they
are easy to operate, but they have some limitations related to
background clutter, occlusion, camera position, intra-subject
variations and space constraints [1]. On the other hand, inertial
sensors enable coping with a much wider field of view as
well as changing lighting conditions, but sensor drifts may
occur during long operation times; moreover, measurements
are sensitive to sensor location on the body. Several works,
such as [2] and [3], focused on the use of multimodal sensors
to perform activity recognition. In our previous work [4] we
combined data from a depth camera mounted on a mobile
platform, able to self-localize in the environment, and from the
inertial wearable device SensHand. Our actual work aims at

developing a multi-modal system in which inertial and visual
data are combined together to offer a robust human gesture
recognition. It goes beyond the state of the art by reproducing a
more realistic scenario in which the activities to be recognized
are part of continuous scenes.

II. MATERIAL AND METHOD

The presented system is composed by the social humanoid
robot Pepper, endowed with a camera mounted over its tablet
on its chest, a wearable inertial device namely SensHand, ca-
pable of acquiring inertial data from human’s hand and fingers,
and a data processing module to integrate the components of
the system.

Twenty healthy people were involved in the experimenta-
tion, 13 males and 7 females, aged from 19 to 44 years old;
they were all right-handed. The experimentation was designed
to reproduce a real case scenario, in which the participants
were asked to wear SensHand and to perform five different
daily living scenes, each for one minute, in front of Pepper
robot. Every scene was composed from two or three ”basic”
gestures, as follows. Having Lunch (HL): eat with the fork
(EF) and drink from a glass (DG); Personal Hygiene (PH):
brush teeth (BT) and DG; House Cleaning (HC): walk (WK)
and sweep with the broom (SB); Working (WO): use laptop
(UL), write on a paper (WP) and talk on the phone (TP);
Relax (RE): TP, relax on the couch (RC) and read a book
(RB). Pepper robot gave instructions to the subject about how
to perform the scene and it could repeat the assignment if
the participant did not understand. The session was recorded
by two RGB-D Intel RealSense cameras, one mounted over
Pepper’s tablet and the other one located on the right side of
the participant at the same height from the ground, in order
to acquire data from two different points of view.

III. GESTURE RECOGNITION

As concerns RGB images analysis, 25 keypoints’ features
were estimated thanks to the Openpose software [5]. However,
only the x and y coordinates of the most discriminative set of



joints, composed by head, neck, hands, feet and torso, were
analysed, following the approach reported in [6]. Then, the
signal containing the skeleton features was segmented by 50
%-overlapping moving windows with a size of 3 seconds as
the inertial ones. This procedure was performed for the frontal
(FC) and the lateral (LC) cameras. For what concerns the
wearable SensHand glove, only the data coming from the wrist
and index finger sensors were used [7]. They were first filtered
with a 4th order digital low-pass Butterworth filter, segmented
in 3 seconds’ windows and then, from each of them, different
features were extracted. The final dataset was composed by
10 features related to acceleration values, i.e. mean, standard
deviation, variance, mean absolute deviation (MAD), root
mean square (RMS), skewness, kurtosis, signal magnitude area
(SMA), normalized jerk and power, and 6 features to angular
velocities, i.e. mean value, standard deviation, variance, MAD,
RMS and power. The Kruskal Wallis test was then applied:
it confirmed that the ten gestures, which characterized the
activities under investigation, were statistically different for
all the extracted features (p < 0.05). Then, a correlation
analysis was performed in order to retain only the significantly
uncorrelated features (Correlation Coefficient < 0.85). The
system was first evaluated by considering both inertial and
visual sensors as stand-alone systems and then by fusing the
two sensor modalities at feature-level for a total of eleven
datasets: frontal camera (FC), lateral camera (LC), index finger
(I), wrist (W), IW, I+FC, I+LC, W+FC, W+LC, IW+FC and
IW+LC. These datasets were classified using a a 10-fold
cross-validation technique. The final classification results are
obtained as average of the performances of the ten created
models. Three supervised machine learning algorithms were
employed: Multiclass Support Vector Machine (SVM), consid-
ering a third order polynomial kernel function, Random Forest
(RF) and K-Nearest Neighbor (KNN), setting the k nearest
neighbors = 1.The classification performances were evaluated
in terms of accuracy, precision, recall and F-measure.

IV. RESULTS AND DISCUSSIONS

After the feature selection process, 19 inertial features were
retained for IW configuration and only 10 for I and W ones.
All skeleton features were included in the analysis. 3361 in-
stances were analysed for each combination of data including
the FC, while 3213 for the ones including the LC. Whereas,
3213 instances were considered for I and W configuration. The
results obtained under the multi-modal datasets are better than
those achieved when considering stand-alone configurations
and they are comparable with the related works. As concern
the stand-alone configurations, the results show that I and W
configurations obtains accuracy levels up to 0.55 and 0.57,
respectively, with Random Forest, while 0.65 of accuracy is
obtained when considering the IW combination with SVM.
The frontal camera (FC), which has a good view of the user
performing the activity, is able to recognize the gestures with
0.77 of accuracy, recall, F-measure and precision, with the
SVM classifier. These values decrease when considering the
camera positioned on the side (LC). In this case, the accuracy,

recall, F-measure and precision are 0.69, 0.70, 0.71 and 0.73,
respectively, with KNN classifier. As concern the multi-modal
datasets, the fusion-at-feature-level approach improves the
classification accuracy compared to the use of the independent
classifiers: the system is able to recognize the ten activities
with 0.81 (IW+FC) and 0.75 (W+LC) of accuracy as best
configurations (obtained with SVM and RF respectively). In a
life-like situation, the robot will never be positioned exactly in
front of the person performing the activity, but it will be more
likely in a non optimal position, e.g. on the side. In this study,
we found out that the system decreases its capabilities by only
moving 90 degrees the position of the camera, losing 8% of
accuracy when its view is lateral. This is due to occlusion
problems that lead to greater difficulty in recognizing gestures.
This issue can be overcome by fusing the information that is
acquired from the cameras, able to capture the gross motor
actions of the body, with the inertial wearable device, able
to capture the fine movements of the hand. Furthermore,
it is important to remark that the experimental session was
conducted by reproducing real operative conditions as far as
possible: in each scene, participants could switch freely from
one activity to another in one minute. In this amount of time,
the cameras and the SensHand recorded visual and inertial data
continuously, therefore the acquisition stream was unique for
each scene. For this reason, the novelty with respect to Manzi
et al. [6], whose system achieved 0.77 of accuracy, is that in
our work the data corresponding to the transitions from one
activity to the other were present in the acquisition signal,
and the system revealed to be good enough in classifying
them without losing much in terms of performances (0.81 of
accuracy). Considering the increasing interest in robots as part
of daily life, it is reasonable to find a good trade-off between
robotic and wearable technologies to exploit the advantages
of a heterogeneous system and to improve the abilities of the
robot to understand the user activities and adapt its behavior
according to the person.
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