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Abstract—Among the devices aimed to the conversion of the 

wave energy source, PeWEC (Pendulum Wave Energy 

Converter) stands out for his ability to reliably absorb power by 

exploiting the relative rotation between its hull pitching and the 

oscillation of an internal pendulum. The conversion process is 

performed by the PTO (Power Take-Off), a generator aimed of 

damping the pendulum motion. By regulating the PTO torque, 

PeWEC can adapt to different sea states and maximize the 

absorbed power. However, the control adopted for the definition 

of this action follows a model-based approach, affected by 

uncertainties and unable to conform to system changes. To solve 

these issues, this work presents a model-free control strategy 

that is based on learning a metamodel from real data and 

optimizing its action through it. 

Keywords—Wave Energy Converter, Artificial Neural 

Networks, Deep Learning, Model-free control, Genetic Algorithm. 

I. PEWEC AND STATE OF THE ART OF ITS CONTROL 

In the field of renewable energy, one of the most 

promising branches is wave energy. The amount of energy 

potentially available from the motion of waves in seas and 

oceans is high. Only a small part of this energy is currently 

converted and exploited. Systems used to extract wave 

energy are called WECs (Wave Energy Converters). One of 

these, PeWEC (Pendulum Wave Energy Converter), uses the 

relative rotation of a pendulum with respect to the device hull 

to convert the energy of sea waves motion into electrical 

energy [1] [2]. It is composed of an anchored hull capable of 

orienting itself with respect to the incident wave. The energy 

conversion is performed by damping the pendulum 

oscillations on its rotational axis. This conversion process is 

actuated inside the hull by the Power Take-Off (PTO) system 

[1]. In Figure 1, a simple scheme of the PeWEC is shown. 

The wave resource is variable in time and space. Its 

characteristics can be expressed through various parameters, 

including the energetic wave period Te and significant height 

Hs, which affect the amount of energy available, the way the 

system will be stimulated and how it will respond in terms of 

conversion. These parameters define the sea state, and they 

are estimated from the measures of hull motion [3]. It is 

therefore clear that the control system of WECs must be able 

to adapt to the sea state changes to maximize the extracted 

energy. 

The control system that is currently adopted on PeWEC 

generates a torque that is a linear combination of the position 

and velocity on the PTO axis. The parameters of the control 

law are computed through a lookup table built offline using a 

model of the system. For each sea state, the lookup table 

returns the optimized combination of control parameters. The 

applied control torque can be formulated as: 

𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑐𝜀̇ + 𝑘𝜀                     (1) 

In (1), c and k are the control gains, while 𝜀  and 𝜀̇  are 

respectively the position and velocity on the PTO axis. 

II. PROPOSED MACHINE LEARNING CONTROL STRATEGY 

The actual control system is unfortunately affected by 

uncertainties due to the differences between the theoretical 

model on which the simulations are based and the actual 

device. Moreover, the proportional control parameters do not 

change with the variation in time of the real plant, but it is 

chosen in the design phase based on simulations of the 

theoretical system with ideal waves. Therefore, the control 

action is unable to adapt to the ageing of the device or to the 

changes that could happen due to phenomena like biofouling 

or system faults. For these reasons, the conversion process 

efficiency is affected and the amount of energy extractable 

from the wave motion is reduced. For the above motivations, 

to improve the plant and maximize its productivity, a 

different approach should be pursued. In the field of wave 

energy, the most popular model-free control strategies are 

based on artificial neural networks (ANNs) [4], 

reinforcement learning [5] and extremum seeking [6]. This 

work analyzes different aspects of the development of a 

model-free control for PeWEC based on ANNs and on a 

machine learning strategy. 

The aimed controller should be independent from the 

parameters of the system model, and it should be able to tune 

itself, adapting over time and finding an optimal 

configuration on the basis only of the history of previous 

values of applied inputs and obtained outputs. Moreover, 

having to compute an optimal conversion, among the 

considered inputs, some parameters related to the sea-state 

must be considered to take care of the wave energy source. 

The solution proposed in this work can be summarized by the 

following points. 

1. The actual main parameters of the sea-state are 

forecasted from the values of previous time instants 

with a model based on historical data. 

2. A metamodel is built from data to link the sea-state 

(Te and Hs) and the adopted control action (c, k  

parameters of the PTO torque action) with the 

average absorbed power in the time span in which 

the control action is applied. This work was funded by the Italian Government through “Accordo di 

Programma ENEA-MiSE 2015”. 

Fig. 1 Scheme of PeWEC device. 



3. Depending on the amount of the experiences of the 

system, the control action is chosen aiming to 

explore the control space or to optimize the power 

absorption. 

The first issue related to the model-free control problem 

that has to be faced is the forecast of the parameters that 

describe the actual sea state. To obtain an information about 

the current condition, a prediction of the actual sea state given 

its previous values is needed. To do that a model able to 

describe the behaviour of Te and Hs is necessary. Indeed, 

these two parameters are the only information that the aimed 

control strategy has about the wave conditions in which the 

system is placed. Different methodologies based on time-

series and neural networks have been explored. The selected 

approaches have been analyzed and tested with a dataset of 

two years of sea state parameters computed every 30 minutes. 

The dataset is composed by real data measured by RON (Rete 

Ondametrica Nazionale) in the site of Alghero in 

northwestern Sardinia, Italy. From the results comparison, 

two promising candidates, based on autoregressive (AR) 

models and vector autoregressive neural networks (VAR-

NN), have been identified as potential solutions to the sea-

state forecasting issue. 

The development of the proposed control strategy is based 

on the concept of building a metamodel and optimize the 

control gains through it. A metamodel is a model built from 

real experiences (replaced in this work by simulations) and it 

is used to map the inputs (sea state and control gains) with the 

obtained outputs (average extracted power within 5 or 20 

minutes). To build this metamodel, different strategies based 

on neural networks have been adopted. A deep analysis of 

several different metamodel architectures has been 

performed in the design stage. The possible candidates have 

been evaluated in terms of ability to approximate the data, of 

quality of optima representation and of the needed 

computational effort in training and optimization phases. 

Each architecture has been extensively analyzed through the 

usage of three different test problems (an equivalent mass-

spring-damper system and the linearized models of PeWEC 

that consider respectively one and three degrees of freedom 

of the hull). A promising metamodel architecture has been 

found for the aimed application. It is based on neural network 

composed of three layers, 30 neurons each. The activation 

function adopted for all the neurons is the Rectified Linear 

Unit function (ReLU). Additionally, the problem of the 

choice of the optimization algorithm to be used during the 

computation of the optimal control action has been faced. In 

the evaluations made in this work, the optimal gains have 

been computed by means of a genetic algorithm. 

The final issue considered in this work is related to the 

exploration and optimization strategies. The decision of the 

control action indeed, not only influences the power 

absorption, but also the metamodel development and the 

learning process. An exploration strategy has been elaborated 

for the development of the metamodel. This strategy is 

composed of a first stage of pre-learning and a second one 

based on the concept of exploration/exploitation policy. In 

the first phase, the aim of the control system is not the 

maximum extraction of energy but the pure exploration of 

some possible combinations of the control inputs and of their 

effects in the power absorption. In the second phase, once 

enough experience has been obtained and the metamodel has 

been built, the control action to be adopted is managed by a 

designed greedy function. This function is used to define the 

percentage of exploration actions (that are a random control) 

and optimization ones (which are generated by optimizing the 

control gains using the metamodel in the actual sea-state). 

This greedy function is also referred to as greedy policy 

because, for each sea-state, based on the number of times that 

wave condition has been actually faced, it sets the probability 

of applying one of the two approaches. Since the need of 

exploring decreases with the number of experiences in the 

training dataset, the greedy function decreases too. To 

improve the results, the metamodel is continuously re-trained 

also considering the new additional knowledge. The 

possibility of updating the model with less frequent further 

explorations is also addressed. Moreover, a strategy has been 

defined to forget properly the oldest experiences and enable 

in this way the model to adapt to the changing real system. 

III. PRELIMINARY RESULTS AND CONCLUSIONS 

The proposed solution has been preliminarily analyzed 

through some learning simulations with two test problems 

(equivalent mass-spring-damper system and the linearized 

model of PeWEC that consider one degree of freedom of the 

hull). The learning simulations have been performed with 15 

different sea states, each one 60 minutes long and with 

different occurrences percentage. The preliminary results are 

satisfactory. With a control configuration applied every 5 

minutes, the proposed strategy reaches the performances of 

the simulation-based control in less than 3 days in the 

equivalent mass-spring-damper case. For the PeWEC system, 

the analyzed strategy can perform quite similarly to the actual 

control after 12 days. To reduce this learning time, a solution 

based on collaborative learning [7] could be explored if an 

array of converters is considered, or the time span in which 

each control combination is applied could be lowered. 
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