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Abstract—We present an approach for Task-Motion Planning
(TMP) that compactly encodes the task-level abstractions within
an AND/OR graph growing online. We consider a cluttered
table-top scenario where a target object needs to be retrieved.
Such scenarios are challenging, since the number of object re-
arrangements to achieve the target grasp cannot be determined
before-hand. However, conventional AND/OR graph based plan-
ning requires that the number of re-arrangements are known
ahead of time. To address this challenge we propose an AND/OR
graph iteratively growing online until the target is retrieved.
This iterative graph facilitates faster computations with respect
to traditional task planners. We validate our approach using a
Baxter robot both in the real-world and in simulation.

Index Terms—Task-Motion Planning, AND/OR graphs, Push-
Grasping

I. INTRODUCTION

Task-Motion Planning (TMP) combines discrete decision
making with continuous geometric reasoning, and has been
an active research area among the Robotics and the Artificial
Intelligence community [1], [6], [9], [13], [15]. Task planning
finds a discrete sequence of actions from an initial state to a
goal state, whereas motion planning finds a collision-free path
from an initial configuration to a specific goal configuration.
Real-world scenarios often present such an interaction between
high-level task actions and the low-level geometric motions to
achieve the respective tasks.

Central to TMP is the interaction between the task planning
and motion planning layers. The de facto standard used for
task planning by the planning community is the Planning Do-
main Definition Language (PDDL) [11] and its variations, and
most approaches resort to the same for task planning. For mo-
tion planning several off-the-shelf planners are available [14].
Currently there exist different methods for interaction between
the task and motion layers. Semantic attachments [4], [5],
[15] associate motion planning algorithms to functions and
predicate symbols in PDDL via external procedures. In [13] a
planner-independent interface layer performs this interaction,
while in [1] abstraction and refinement are used to implement
it. Caelan et al. [7] use streams within PDDL enabling
procedures for sampling values of continuous variables. Apart
from the work in [7], in most other approaches the robot
configuration, grasp poses, etc., need to be pre-computed
before-hand thus obtaining a finite motion space. The need for
such a pre-discretization is relaxed in [6], [8], [16]. However,
these approaches are domain specific in nature. Though off-
the-shelf PDDL planners are available, one needs additional
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expertise to incorporate these task-motion interactions that
comply with the state-space search of the planner. Moreover,
integrating multi-agent (the two Baxter arms in our case)
capabilities remains an added challenge since the interaction
layer need to handle multi-agent coordination.

In this paper, we address these challenges by encoding the
TMP problem efficiently and compactly within an AND/OR
graph that grows iteratively till a goal state is reached. Specif-
ically, we consider a cluttered table-top scenario wherein a
target object is to be retrieved from clutter. Objects that hinder
the target object grasp are either picked and placed or pushed
to a different location. In general, an AND/OR graph needs
to be constructed offline. However, since the number of object
re-arrangements are scenario-dependent and not known before-
hand, such an offline construction is impossible. We thus
propose an iterative AND/OR graph that grows online until
the target is retrieved.

II. APPROACH

We present an integrated task-motion planning framework
for retrieving a goal object by re-arranging (pick and place or
push) the objects hindering the grasps.

Fig. 1: Two AND/OR graphs growing
online.

The AND/OR
graph representation
provides a framework
for the planning and
scheduling of task
sequences [12], with
a suitable motion
planner used to check
the feasibility of
such tasks [10]. A
background on the use
of AND/OR graphs
for human-robot
collaboration, and a
related example can be
found in [2]. Moreover,
an AND/OR graph
inherently requires
fewer nodes than
the corresponding
complete state
transition graph,
reducing the search
complexity of the
AND/OR space. Yet,
such a representation

requires all possible object re-arrangements to be computed



offline. For the scenario considered here, this representation
thus seems incompatible as we do not know before-hand the
number of objects to be re-arranged. Moreover, the AND/OR
graph is not compliant to failures in motion execution nor
grasping arising due to actuation and other hardware failures.

We recall here that the nodes of an AND/OR graph represent
a high-level state and the hyper-arcs represent an action or a
sequence of actions achieving the desired states. We note that
by defining a suitable abstraction for our clutter scenario, the
nodes and hyper-arcs of the graph remain the same irrespec-
tive of the number of object re-arrangements. Thus such an
abstraction allows us to have a graph that grows/expands itself
online until the target is retrieved. This is seen in Fig. 1, where
an initial graph G0 is expanded to a new graph G1. The nodes
in the graph represent different states. We note that in the two
graphs apart from the nodes INIT#0 and INIT#1, all the other
abstractions (nodes and hyper-arcs) remain the same. After
each re-arrangement, the work-space configuration changes
and the INIT# nodes represent such changed configuration,
for example, the whole G0 graph is embedded within INIT#1.
This can be thought of as a virtual node augmented to the
graph.

Given the initial work-space configuration, an AND/OR
graph denoted by G0 is first constructed. The graph G0

represents the fact that if a feasible grasping trajectory exists
then the Picked Target task is to be performed and the graph
terminates (END). Otherwise, an object is to be identified to
be either pushed (Pushed Largest Object) or grasped (Grasp
Closest Object to Target or Grasp Closest Object to Arms
EE), where we use EE for “end-effector”. The grasped object
is then placed in a storage are (Object Placed in Storage).
Since the target object has not been grasped, G0 expands to a
new graph G1 with updated work-space configuration via the
node INIT#1. The process repeats iteratively until a graph Gn

is expanded, which terminates when the target is retrieved.
We note here that Gi can also fail due to actuation errors. In

such a scenario a new graph expands with the same work-space
configuration thus making our approach robust to execution
failures. To decide which objects to re-arrange, [3] search
for objects that penetrate the planned trajectory space of
each action by computing their volumes. In contrast, we first
compute the motion plan by considering the object of interest,
neglecting other objects in the work-space. For this planned
trajectory, we then compute the collision probabilities with
each object and the ones with collision probabilities greater
than an ε bound are chosen as the objects to be re-arranged.
Different heuristics are then employed to decide the order of
removal.

III. RESULTS

To demonstrate the capabilities of our approach, we consider
a cluttered scenario in which a Baxter robot has to retrieve
an object of interest. We restrict the pick-ups to only side
grasps to make the scenario more challenging. To perceive
objects in the environment, an RGB-D camera is mounted on
the robot head. In Fig. 2(a), seven cylinders are placed on a

(a) (b)

Fig. 2: (a) Experiment setup. (b) Scene planning in simulation.

AND/OR Time 0.057±0.001 [s]
Online Graph Search Time 0.092±0.02 [s]

Motion Planner Time 6.2±0.7 [s]
Execution Time 119.85±4.57 [s]

Online Graph Depth Growth 15±3
Motion Plan Attempts 130±23

TABLE I: Quantitative results.

table and the robot is required to pick up the object (target)
with red tape; scene planning is visualized in simulation in
Fig. 2(b). The white box has to be pushed since it occludes
the target. However, few objects around the white box need
to be removed before pushing. The experiment was conducted
eight times and in each experiment the table configuration
is randomly re-arranged. The overall planning and execution
times for task and motion planning segments are shown in
the first four rows of Table I. AND/OR time is the time for
traversing the initial AND/OR graph G0 and the online graph
search time is the time for traversing the AND/OR graphs
that grows online. An arc of an AND/OR graph may encode
a sequence of actions and the graph search component of the
task planner enumerates them to examine the feasibility. As
seen in the last two rows of Table I, the graph was iteratively
grown about 15 times on the average in each experiment
with around 130 motion planning attempts. We note that the
increased depth and motion planning attempts are due to (1)
the failure of the motion planner in finding feasible plans, (2)
grasping failures.

IV. CONCLUSION

We have presented a novel approach for TMP planning
using iterative AND/OR graphs that grow online till the goal
state is reached. Such a representation addresses the challenge
of not knowing the number of object re-arrangements before-
hand and allows for fast computation as compared to tradi-
tional task planners. We have validated our approach with a
Baxter robot. Current work includes validation on other TMP
benchmarks and extension to human-robot collaboration.
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Pddlstream: Integrating symbolic planners and blackbox samplers via
optimistic adaptive planning. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 30, pages
440–448, 2020.

[8] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and
motion planning in the now. In Robotics and Automation (ICRA), IEEE
International Conference on, pages 1470–1477. IEEE, 2011.

[9] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Integrated task and
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