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Abstract—Robots are nowadays increasingly required to deal
with (partially) unknown tasks and situations. The robot has,
therefore, to adapt its behavior to the specific working conditions.
Reinforcement learning (RL) holds the promise of autonomously
learning new control policies through trial-and-error. However,
RL approaches are prone to learning with high samples, partic-
ularly for vision-based continuous control tasks. In this paper,
a learning based method is presented that uses simulation data
and kinematic state information to learn an object manipulation
task through RL. Unlike vision, the input modality based on
kinematic information allows learning with less samples and
facilitates transfer to the real-world without additional training
requirements. The control policy is parameterized by a neural
network and learned using modern Proximal Policy Optimization
(PPO) algorithm. A dense reward function has been designed for
the task to enable efficient learning of an agent. The proposed
approach is trained entirely in simulation (exploiting the MuJoCo
environment) from scratch without any prior demonstrations
of the task. A grasping task involving a Franka Emika Panda
manipulator has been considered as the reference task to be
learned. The proposed approach has been demonstrated to
be generalizable across multiple object geometries and initial
robot/parts configurations. Furthermore, it is shown that the
learned policy can transfer the past learning experience and
quickly adapt to new variations of the environment by fine tuning
through on-policy RL, having the robot able to re-execute the
target task in modified setting.

Index Terms—reinforcement learning, intelligent robotics, ob-
ject manipulation, proximal policy optimization

I. PAPER CONTRIBUTION

Training in simulation is a feasible approach for learning
manipulation tasks with deep reinforcement learning [2]. Sim-
ulation enables access to the full state of the system, e.g., part
position, allowing faster training of RL policies. In this paper,
a model-free RL method is proposed that leverages simulation
data and proprioceptive state information to learn a grasping
task. Specifically, Proximal Policy Optimization (PPO) is
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elected to train the robot controller, due to its recent success on
difficult control problems, e.g., manipulation of a Rubik’s cube
with robot hand [1]. Therefore, the control actions (i.e., the
desired joint velocities and gripper’s joint position) are learned
in continuous spaces on the basis of a defined reward function,
allowing to take into account the success of the task and its
performance. The learned behavior can then be transferred
to the real robot, to execute the target task. Furthermore, an
adaptation procedure is presented that improves the sample
complexity by initializing the target task’s policy with the
base policy, thus, reducing the required amount of training
data. The proposed approach has been demonstrated to be
generalizable across multiple object geometries and initial
robot/parts configurations. In fact, despite the task has been
trained only on a single cube with no prior task information,
the learning is able to generalize across different geometric
shapes and sizes, minor changes in the position of the part to
be manipulated, and across multiple initial configurations of
the robot.

II. TASK DESCRIPTION

The aim of the paper is to implement the described approach
to autonomously learn a grasping task. The task consists of a
robot interacting with a cube of nominal size 6 cm placed on a
table. The goal of the robot is to successfully position its grip
site around the cube, grasp it and then finally lift it off the
contact surface. In order to evaluate the proposed approach
on a grasping task learning, Franka Emika Panda, a 7-DoF
torque-controlled robot is used as a robotic platform.

III. RESULTS

PPO is applied to the task of lifting the cube above a certain
height. The main aim is to analyze whether the proposed
method can learn to accomplish this task and how well can it
generalize to new situations that were not seen during training.
The policy is trained for a total of 10 million time steps where



Fig. 1. PPO training results. The plot depicts the progression of mean
accumulated reward for episodes.

each episode lasts for 600 steps, giving an agent approximately
2.5 seconds to accomplish the task. At the beginning of each
episode, initial configuration of the robot and the cube is reset
to fixed position. The results of training are shown in Figure 1
and Figure 2, suggesting that the the agent has learned to
perform the task successfully after 4 million steps.

The generalisation capabilities and robustness of the learned
neural network policy have been tested, considering nominal
cube and different geometries to be grasped:

• nominal cube with size 6 cm;
• smaller cube with size 4 cm;
• cylinder with size 3 cm radius and 3 cm height;
• screw-driver.

10 test trials have been run and results are summarised
w.r.t. successful completion of the task. The proposed model
shows the success rate of 100% in all four cases. In last two
cases, the policy’s ability to grasp new shapes is tested by
replacing the cube with a cylinder and a screw-driver placed
nearly at the cube’s original position.

Table II shows the results in which the original position
of robot and/or of the cube has been changed. In the first
case, a small random noise has been added to the initial
joint positions of the robot at the beginning of each episode.
The robot can still grasp and lift the cube in most cases,
whereas in 2 failed trials, the robot could not successfully
position the gripper around the cube and remained near the
cube for the rest of episode. For the second case, the nominal
position of the cube has been modified by ±8 cm in order
to test the policy’s robustness to variation in part’s position.

TABLE I
EVALUATION TRIALS FOR FIXED POSITIONS.

Test Object Success rate
1. Nominal cube 10/10
2. Smaller cube 10/10
3. Cylinder 10/10
4. Screw-driver 10/10

Fig. 2. PPO training results. The plot depicts the progression of mean success
rate for episodes.

For this specific case, 20 trails are performed, 10 for each
direction and success rate is reported as the mean of 20 trials.
The task has been completed successfully in most test runs,
while sometimes the robot’s actions results in failure. In these
specific situations, the robot either grasped the cube at the
edges resulting in unstable grasp or collided its gripper with
the cube not being able to grasp successfully. In the last test,
the potential for adapting the learned task’s policy has been
performed with significant changes in position of the cube.
With simple fine-tuning procedure for a pre-trained policy,
the resulting performance achieves 100% success within 30
minutes of additional training, indicating that the policy can
successfully reuse prior task experience and quickly learns to
perform in new task settings.

IV. DISCUSSION

In this paper, an intelligent task learning has been formu-
lated as a RL problem, demonstrating the possibility of learn-
ing low-level control actions purely from gathered experience
in a simulated environment. Results show that it is possible
to train continuous control actions based only on the state
observations, and in a reasonable amount of time. Achieved
results highlight that the learned policy performs well to new
situations, and it can also adapt its learning to significant
variations of the environment with slight amount of additional
training.
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TABLE II
EVALUATION TRIALS FOR VARIED POSITIONS.

Test Variable Amount Additional training Success rate
1. Robot position max 2% No 8/10
2. Cube position ±8 cm No 7/10
3. Cube position +10 cm Yes 10/10


