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Abstract— The elasticity of soft robots is influenced by the
employed controller. High-gain feedback techniques can stiffen
up the behavior of the robot. On the other hand, learning-
based controllers play a crucial role in the trajectory tracking
of flexible arm robots. They mainly rely on feedforward com-
ponents and do not need an accurate description of the model.
Hence, they achieve good tracking performances and result in a
minimal change of the dynamics of the systems. However, any
learning algorithm presents generalization issues: any slight
changes in the desired task leads to a completely new learning
phase. Motivated by this, we focus on the generalization of a
control action to perform trajectories with a different final time.
In particular, we introduce a model of flexible arm robot, then
we give a necessary and sufficient condition to generalize the
control action without any knowledge of the dynamic model.
Additionally, we report a learned-based algorithm to computed
the control action. Finally, we validate the generalization
algorithm simulating a one-link flexible arm, modeled as two
degrees of freedom chain, in which the first joint is active, while
the second is passive.

I. INTRODUCTION

Soft robots include systems with elastic elements lumped
at the joints [1] (i.e. articulated soft robots) and robots
characterized by continuously deformable bodies [2] (i.e.
continuum soft robots). Controlling soft robots is a challenge
yet to be tackled. In particular, three are the main issues [3].

First, flexible robots are characterized by underactuated
dynamics [4]. It is not possible to independently associate
the acceleration of each joint [5].

Another challenge is that the control action affects both
the performance and the flexible arm elastic behavior. Histor-
ically, control techniques use compensation of the dynamics
and high gain feedback loop, stiffening the robot behavior [6]
and [7]. Conversely, feedforward approaches do not change
in the dynamic of the robot [8].

The third challenge for flexible arms is obtaining a reliable
model of the system [9].

A class of learned-based controllers, namely Iterative
Learning Controllers (ILC), tackles these three challenges:
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Fig. 1. Model of a one-link flexible arm.

the control action is (almost) model-free and feedforward,
and dealing with the system underactuation through a de-
pendence on the system relative degree [10].

To solve this issue, several generalization algorithms for
articulated soft robots have been proposed. In [11] the
Authors generalize the control action w.r.t. the velocity exe-
cution of the trajectory. In [12], the generalization approach
regards the stiffness of the joints. Finally, [13] proposes
a method to track a novel trajectory exploiting previous
examples and without new learning processes.

In this work, we extend the time generalization approach
presented in [11] for one-link flexible arms. In particular, we
introduce the model of a flexible arm, then we draw a neces-
sary and sufficient condition on the number of experiments
needed to generalized a learned based control action as the
one proposed in [14].

II. PROBLEM DEFINITION

We model the one-link flexible arm such according to [4].
Indeed, the continuum arm is discretized as a robot with a
combination of active and passive elastic joints, i.e.

M(q)i§+C(q,9)g+G(q)+Dg+Kg=1=F0, (1)

where ¢,q,¢ € R" are the joint position, velocity and acceler-
ation vectors, respectively. We indicate with na the number
of active joints, while np is the number of the passive ones,
such that ny +np =n. M(q) € R™" and C(q,q) € R"™" are
the inertia and Coriolis matrix of the robot, respectively.
G(gq) € R" includes the gravity effect, and D,K € R"™*" are
the diagonal damping and stiffness matrix. In torque term
F0, 0 is the motor position, which is the control input, and
F :R"x R"™ — R" indicates the underactuation matrix.



The output function can be written with a combination of
joint positions, i.e.,
y=Tq, 2)

where T € R"A*" is a linear constant map.
Let us assume what follow.

Al) The system (1) is SISO (single input single output), i.e.,
naA = 1.

A2) The system (1) is smooth in the sense of
IC(qas¢a) — C(gb,gv)|| < Collga—gvll + Ci[ga — gvll,
with Cp, C1 € R.

A3) The system (1) has a relative degree equal to r.

A4) Given a database of learned controllers, we indicate
with 1. a generic experiment and with @ the number
of experiments, i.e., te =1,---, .

AS5) The desired trajectory to track yq : [0,#] — R (# terminal
time), is feasible, continuous, r times differentiable V¢ €
[0,#] and such that yq = y(cert).

Applying the procedure in [11], for a one desired trajectory
y(orrt) scaled from an o € R factor leads to

$(ort) = y(ont) , @)
; d
ymm:ﬂmﬂzmigg’ )
. d2
9““”=V“Wﬂ=4%dégg?' (5)

Given a o-dim set of controllers and given the desired
trajectory yq, the goal of this work is to design a model-
free and feedforward control action able to track yq, using
the w-dim database.

III. PROBLEM SOLUTION

In this section, inspired by [11] and [15], we propose a
method to generalize the task velocity execution.

Theorem 1. Let be the system (1), let be (2) the output
function and let r, = 1,...,® be the r, —th experiment. In
order to time scaling the desired trajectory the necessary
and sufficient number of distinct experiments @ to express
analytically F 0 without any knowledge of the model is 3.

Proof. The i—th line of the dynamics in (1) can be written
as
Y Mij(9)d;+ Y Tiji(q)gdn
J Jl (6)
+Gi(q) + Digi + Kigi = F:6i(t) = w(t) ,
where I';j; are the Christoffel symbols.
Substituting (6) and (3)-(5) in (2) leads to

(Z T:M;;q; + ZED;I@;@Z) e o + (Z TiDiC?i) e oy
ij ijl i
+Y (TG +TiKigi) = T ,
i
(7

with i,j,[=1,--- n.

Since the system is SISO, (7) is a scalar equation, which
can be written as a polynomial in "t

ol + R oré + & =1, , ()

where &y, &;,& € R are functions of time.

Defining & = [£,&1,E]T € R3, (8) represents the re—th
line of a linear system. Indeed, Performing r. =1, 2, 3
experiments, leads to the linear system

PE(1) =1(1) . )

We are interested to determinate the & (¢) vector, so (9) has to
be invertible. The matrix P € R3*3 is a Vandermonde matrix
which is alway invertible if and only if "o # ", Vre # r;.

O

In order to compute, the control 7y such as yq = hq(t) =
h(tar) can be found as

E=p7
(10)
{Td(f) = [of, or 1] &
Remark 1. Eq. (10) leads to a feedforward action. The
method only depends on the database, i.e. T, which collects
the employed controller.

In [14], we proposed a pure feedforward ILC-based control
law and we proved its convergence via inertial conditions. We
here summarize the result of [14] in the following Theorem,
which is used to compute 7, Vre.

Theorem 2. Let be system (1), and a desired output y4(t).
Assuming q;(0) = qq(0), Vj (=iteration index). The control
law

01(1) = 6,0+ o= Y 1 (0 0= ) L
i=0

__&
TM(q)

(@) the

with € € [0,1), € Rji=1,---,r control gains and ¥

i—th derivative of the output, is convergent.
Proof. See [14]. O

IV. VALIDATION

In this section, we test the effectiveness of the general-
ization method. We simulate a system as depicted in Fig. 1,
where the first joint is active and the second is passive. The
dynamic model is reported in [14].

The dynamic parameters m = 0.45kg, J = 0.01kgm?, [ =
0.06m, a = 0.12m, k = 3N/rad and d = 0.05Ns/rad are the
mass, inertia, length, center of mass distance, spring and
damper of each link, respectively.

The value of the parameters ¥ in (11) are chosen such as
Y=1[%, 7, %] =[100, 10, 1]. Since the starting position of
the robot is x(0) = 041, the initial guess Oy in (11) is null.

In order to quantify the tracking performance, the root
mean square (RMS) is employed.

We here focus on the angular position of the robot, i.e.,
T=[1 1],and ¢=[g1 g2]" in (2). Hence, the relative
degree r of the system is such as r = 2.

As desired trajectory, we use a minimum jerk signal that
starts from the initial position yg = 0 and reaches the final
position y; = 7.

The ILC database is obtained performing @ = 3 minimum
jerk trajectories with different final time, in particular # =
{5,10,15}s so o = {%, 1, %} w.t.r. of the 10s trajectory.



Then, we tested the generalizating approach applying (10)

for 25 scaled factors ar = {&,1, 5, -+, 3} with the
respect of the 10s minimum jerk.
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Fig. 2. RR: simulation results for the minimum jerk trajectory.

Fig. 2 reports the simulative results of the iterative learning
process. Fig. 2(a) shows error evolution over iterations, while
Fig. 2(b) reports the torques computed at the last iteration,
which are collected in 7= [11, T, 73]T of (10).
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Fig. 3. RMS over time execution.

Fig. 3 depicts the RMS for all the tested trajectories testing
the 25 scaled trajectories.
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Fig. 4. Output tracking performance.

Finally, Fig. 4 reports a subset, i.e. ar = { {5, %, %, %},
of the tracking performance at the last iteration.

Results show that the proposed method is able to achieve
good tracking performances, without any description of the
model, while preserving the elastic behavior and compensat-
ing the presence of passive elements in the chain.

Not surprisingly, the best tracking performances are in
the middle of the already learned torques: the error grows
linearly from # = 15sec.

The RMS error averaged in all the 25 scale simulation
trials is about 0.0032rad.

V. CONCLUSION

This article proposes an algorithm to generalize acquired
control inputs w.r.t. the velocity of the desired trajectory
for a one-link flexible arm. Results show that the minimum
number of experiments required to achieve velocities gener-
alization is three. The proposed method is feedforward and
model-free. Simulation results show that it archives good
tracking performances.

Future work will study the generalization of learned tra-
jectories w.r.t. stiffness behavior and space trajectory.
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