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Abstract—Recent advancements in robotics are pushing toward
a more strict interaction between machines and their surrounding
environment, including humans, in the general framework of
co-botics, in both industrial and assistive applications. This
comes with the need of guaranteeing i) the acceptability of the
technology and ii) the users’ safety. One of the key characteristics
that a co-bot should have to satisfy these requirements is to behave
as a human would, especially for what concerns the predictability
of the robot movements. The intent of our work is to develop a
framework for the generation of human-inspired movements for
a generic redundant manipulator that works in an unstructured
environment. This manuscript reports on recent advancements
of our contribution to this line of research, with a special focus
on the identification of a basis of motion primitives, which can
be used as key ingredients for the planning of human-like mo-
tions. Then, we discuss how the feed-forward implementation of
these human-like motions can be integrated with a tactile-based
feedback policy, when a purposeful interaction with an object
happens. These results could open also interesting perspectives
for autonomous robotic manipulation.

I. HUMAN-INSPIRED MOTION PLANNING

Recent findings in social robotics have highlighted how the
human-likeliness (HL) of the interaction between humans and
robots is one of the key factors for a safe and effective Human-
Robot Interaction (HRI) [1]. One interesting sub-problem is
related to the generation of robot movements that can be
perceived as HL by the human. This could likely increase
the acceptance and the predictability of robotic systems and
their behavior. Unfortunately, the generation of HL movements
is not straightforward, because humans are characterized by
an extremely complex bio-mechanics, especially at the upper
limb level, which is made of 206 bones, moved by over 650
muscles. How the brain can cope with this complexity has led
to a flourishing literature in motor control (see e.g. [2]) with a
strong impact in robotics [3]. Indeed, understanding the basis
components of motion coordination has provided significant
results in the design [4], the control [5] and the planning [6]
of redundant robotic devices, with particular focus on hands.

All these advancements relied on the observation that the
neural organization of movements results in task specific co-
variation patterns between elemental variables [2]. Interestingly,
leveraging on these functional couplings between units it is
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possible to identify a reduced number of motor schemes, whose
combination can approximate the variability of HL behavior,
not only in terms of static postures [3], but also for whole
motion generation [7], [8].

In our work we have pushed further this approach, by
proposing the usage of functional analysis as a tool to identify a
small number of motion primitives that represent basis elements,
whose combination can reconstruct human movements, with
special focus on the upper limb kinematic.

In a nutshell, the idea is to use functional Principal Com-
ponent Analysis (fPCA) to identify functional primitives from
time-varying data [9]. Let us assume to have a dataset of human
movements mapped on an arbitrary l-DoFs kinematic model.
For each joint, we have N independent observations of joints’
temporal evolution q1(t), . . . ,qN(t) where q(t) :R→Rl and t ∈
[0,1] is the time (normalized over T evenly spaced time frames).
A generic entry of the dataset qi(t) can be approximated by
a weighted combination of functional Principal Components
(fPCs) ξ s

j (t) as in the following: q(t)' q̄(t)+∑
smax
i=1 α i ◦ξ i(t) ,

where α i ∈Rl is a vector of weights, ξ i(t) ∈Rl is the ith basis
element or fPC and smax is the number of basis elements. The
operator ◦ is the element-wise product (Hadamard product),
q̄∈Rl is the average of q(t). The principal output of functional
analysis is an ordered basis of functions {ξ 1

j , . . . ,ξ
smax
j } that

maximizes the explained variance of the movements included
in the dataset.

In particular, the first fPC ξ 1
j (t) can be intended as the vector

that solves the following optimization problem:

max
ξ 1

j

N

∑
i=1

(∫
ξ

1
j (t)q

i
j(t)dt

)2

s. t. ||ξ 1
j (t)||22 =

∫ 1

0
[ξ 1

j (t)]
2dt = 1 ,

(1)

while the other fPCs ξ s
j (t) are the vectors that solve the same

problem of Eq. 1, with an additional constraint of orthogonality,
i.e.:

∫ 1
0 ξ s

j (t)ξ
i
j(t)dt = 0 , ∀i ∈ {1, . . . ,k−1} .

It is interesting to note that - given a desired level of
reconstruction accuracy - using the first k functional Principal
Components ξ s

j (t) as motion primitives comes with two major
benefits: i) they embed in their shape the key characteristics
of human-like motions (bell-shape profile of velocity, low jerk



Fig. 1. A Kuka LWR pretending to drink from a bottle. Top: planned motion;
Bottom: real motion. Image adapted from [10].

values); ii) these represent the minimum number of independent
vectors that can approximate the whole dataset.

Therefore, this definition of motion primitives is particularly
suitable for the implementation of a planning problem. Indeed,
given a desired initial and final configuration of the kinematic
chain, the problem becomes finding the best set of parameters
α i. Such an optimization can be formulated as the following
constrained problem:

min
q̄,α1,...,αk

Jtask(q) s.t. q(t) = q̄+
k

∑
i=1

αi ◦Si(t) , (2)

where Jtask(q) is a generic task-related cost function and k the
number of functional PCs enrolled. With this implementation,
the search space is narrowed, with the twofold purpose of
ensuring human likeness, and strongly simplifying the control
problem (because the search space is now of dimension k+1).
Note that, according to the observations discussed in [6], [7],
it is reasonable to expect that a very low number of functional
PCs should be sufficient to implement most of the human-like
motions at the joint level.

The simple case of a Point-to-Point free motion can be easily
implemented through Eq. 2 with the cost function Jtask(q) =
||q(0)−q0||22 + ||q(1)−qfin||22, whose solution can be found in
closed form (see [6]. More general cases, in which the robot
is also asked to avoid obstacles along the path, can be solved

by choosing: Jtask(q) =
∣∣∣∣∣∣∣∣[ q(0)−q0

q(1)−qfin

]∣∣∣∣∣∣∣∣2
2
+ρP(q,PO), where

the first term is responsible to generate a trajectory between
the desired initial and final configurations, while the second
contribution is a potential-based cost function which maximizes
the distance between the robot and the obstacles. Noteworthy,
the cost function Jtask(q) can even be more general and include
other terms to account for other desired motion characteristics
(such as energy efficiency).

The trajectories generated through the solution of Eq. 2 are
defined on the 7 DoFs kinematic model used to describe the
human kinematics. Therefore, to generalize the HL trajectories
generated with our approach a mapping problem needs to be
solved. Our implementation, presented in [10], proposed to
leverage on a Cartesian Impedance controller which minimizes
the distance between the planned and the robot end effector.
Furthermore, to handle the redundancy, we also included a
secondary Cartesian Impedance controller, in the nullspace of
the first one to avoid conflicts, which is asked to minimize the
distance between planned and real elbow position.

II. CLOSING THE LOOP VIA TACTILE SENSING

The HL movements generated through the approach pre-
sented in the previous section can be implemented following
a feed-forward approach. However, when it comes to interact
with the environment or an object, the strategy presented so
far needs to be integrated with a feedback policy to partially
compensate for errors caused by uncertainties in the estimation
of the object properties, such as its position and dimensions.
To face this problem, we proposed to include an IMU-based
tactile sensing over the back of the fingertips of the robotic hand
mounted on the manipulator. The idea, extensively discussed
and validated in [11], leverages on the observation that, for each
relative direction of contact between the hand and the object,
the accelerations exerted on the fingers show different patterns.
Therefore, these characteristic signals can be associated with
a consequent adaptation of the hand w.r.t. the object in terms
of relative re-positioning and re-orientation. Taking inspiration
from the observation of human behavior, we extracted a set
of 13 reactive primitives which, for each direction of contact,
associate a consequent re-arrangement of the hand. Because
these primitives are defined at the end effector level, these
can be straightforwardly implemented on the robot that, when
reaches and contact with an object, will re-orientate the hand
to improve the probability to perform a successful grasp (see
https://youtu.be/S 771wvvOdY for examples).
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