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Abstract—In the widespread field of underwater robotics
applications, the demand for increasingly intelligent vehicles is
leading to the development of Autonomous Underwater Vehicles
(AUVs) with the capability of understanding and engaging the
surrounding environment. Consequently, the automatic recogni-
tion of targets is becoming one of the most investigated topics
and Deep Learning-based strategies have shown astonishing
results. In the context of this work, two different neural network
architectures, based on the Single Shot Multibox Detector (SSD)
and on the Faster Region-based Convolutional Neural Network
(Faster R-CNN), have been trained and validated, respectively, on
optical and acoustic datasets. The models have been trained with
the images acquired by FeelHippo AUV during the European
Robotics League (ERL) competition, which took place in La
Spezia, Italy, in July 2018. The proposed ATR strategy has
then been validated with FeelHippo AUV in an on-board post-
processing stage by exploiting the images provided by both a 2D
Forward Looking Sonar (FLS) as well as an IP camera mounted
on-board on the vehicle.

Index Terms—Marine Robotics, Artificial Intelligence, Auto-
matic Target Recognition, Autonomous Underwater Vehicles,
Neural Networks,Machine learning for environmental applica-
tions.

I. INTRODUCTION

Over the last few years, Deep Learning (DL) techniques
have achieved significant success in digital image processing
by fulfilling the object detection and classification tasks in
increasingly challenging environments and scenarios. As a
consequence, DL has recently resulted as the state-of-the-art
approach in performing Automatic Target Recognition (ATR)
by means of highly nonlinear feature extraction. In particular,
modern Deep Neural Networks, such as the Faster R-CNN [1]
and the Single Shot Multibox Detector (SSD) [2], have shown
the potential to address the automated object recognition task
in the underwater environment.

Autonomous Underwater Vehicles (AUVs) are commonly
equipped with several payload sensors, including cameras
and sonars, with the aim of perceiving and inspecting the
subsea environment. Although modern cameras provide high-
resolution images, optical data have the non-negligible draw-
back to significantly degrade in the presence of turbid water
and low-light conditions. Conversely, acoustic sensors, such
as Forward-Looking Sonar (FLS) or Side Scan Sonar (SSS),
supply lower resolution, high-noise images with a wide range

of coverage. As a result of the highlighted patterns, several
studies have been proposed in order to extend the traditional
object recognition DL techniques to underwater scenarios by
exploiting acoustic images [3].

In the context of this work, a DL-based ATR architecture
has been designed and implemented by using camera as well as
sonar frames. A large image dataset has been collected, pre-
processed and labeled in order to train the SSD model and
Faster R-CNN for optical and acoustic images, respectively.
Afterward, the trained neural networks have been incorporated
in a custom ATR software, developed in the Robot Operating
System framework. All the presented results have been vali-
dated by sea trials conducted with FeelHippo AUV, developed
by Mechatronics and Dynamic Modeling Laboratory (MDM
Lab) [4] of the Department of Industrial Engineering of the
University of Florence (UNIFI DIEF).

II. ON-BOARD AUV ATR STRATEGY

A. DL model selection

Since carrying out ATR while AUV navigating was the
major purpose of the project, the focus has shifted to the SSD
and Faster R-CNN architectures which guarantee the required
trade-off between high-standard inference performance and the
feasibility for real-time implementation. More in detail, the
SSD network has been selected to fulfill a high-FPS recog-
nition task with optical images. On the other hand, since the
acoustic frames were captured with a lower frame-rate (3 Hz),
the mean Average Precision (mAP) has been favored as model
selection metric over the inference speed; as a consequence,
Faster R-CNN has been preferred to faster but less accurate
DL structures. Since the process of gathering a large dataset
in an underwater scenario is by no means straightforward,
exploiting transfer learning, by fine-tuning higher-order feature
representations, allows to remarkably speed up the training
phase. Thus, using pre-trained model weights has resulted as
the optimal solution in terms of learning and convergence
timings. As far as the specific selections are concerned, the
SSDMobileNet v2 [2] and the Faster R-CNN Inception v2
[1] networks have been adopted to process, respectively, the
optical and acoustic images.
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B. Deep Neural Network Training
The training dataset was acquired with FeelHippo AUV

during sea trials at the European Robotics League Emergency
2018 [5], which took place in La Spezia (Italy). The ERL
Challenge was structured to address a simulated yacht accident
in the basin of the NATO Science and Technology Orga-
nization Centre for Maritime Research and Experimentation
(CMRE); as a partial task of a more complex mission, the
AUVs were required to automatically recognize a damaged
pipeline (represented by a yellow pipeline with attached a red
marker) alongside a whole pipeline structure assembled by
the aforementioned damaged pipeline as well as other five
pipelines. To this end, 500 optical images of the pipelines
and the red marker, with a resolution of 704×576 pixels,
were acquired with the downward-pointing IPCam ELP 720p
to train the SSDMobileNet v2 model. While 200 acoustic
images in a native resolution of 894×477 pixels, depicting the
structure, provided by the 2D FLS Teledyne Blueview M900,
were used to train the Faster R-CNN Inception v2 network.

C. On-field validation
To validate the here proposed ATR strategy, a hierarchical-

stage strategy has been employed. Firstly, several optical
frames and acoustic images have been acquired by using,
respectively, the bottom-looking ELP 720p MINI IP camera
and the Teledyne BlueVIew M900 2D FLS during a FeelHippo
AUV pre-programmed mission. In a second post-processing
stage, the SSD and Faster R-CNN trained models have been
executed on different dedicated hardware platforms; indeed,
this hardware-decoupling solution provides the ATR system
with the capability to process the images with the requested
FPS value and guarantees the trained CNN modes to be
real-time on-board runnable. With regard to the optical ATR
approach, the SSD trained architecture has been optimized as
a compiled graph, which has been subsequently loaded onto
the Intel Neural Compute Stick 2, where it can run at 5.0 fps.
Turning to the Faster R-CNN trained network, the prediction
task on the acoustic frames have been fulfilled by means of
the NVIDIA Jetson Nano, which managed to run the network
at 1.0 fps. The developed ATR framework for AUV on-board
applications is summarized in Fig. 1.

Fig. 1: The developed ATR strategy used to analyze collected
images with FeelHippo AUV (top-left) during a pre-planned
mission.

Fig. 2: Example of pipe and marker recognition in an optical
image.

Fig. 3: Example of structure recognition in a 2D FLS acoustic
image.

III. CONCLUSIONS AND FUTURE WORKS

The proposed work arises as a validation proof of the fea-
sibility of DL methodologies for ATR tasks in the underwater
environment on both the acoustic and optical subsea imagery.
An experimental dataset has been acquired by using the pay-
load sensors of FeelHippo AUV so as to optimally maximize
the training stage effectiveness. As far as the DNNs, used in
the training stages, are concerned, whilst a SSD network has
been trained for the ATR task in optical images, a Faster R-
CNN has been employed to develop an accurate trained model
for the FLS acoustic imagery. Experimental tests have been
carried out in order to validate the above-mentioned trained
models loaded on dedicated hardware platforms. Different
CNN architectures to fit the trade-off between inference speed
and accuracy will be evaluated. Future works will also include
the employment of the proposed ATR strategy in an overall
intelligent system which led the vehicle to detect and recognize
unknown targets as well as navigate towards them.
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