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Abstract—A methodology for developing robust control sys-
tems using Deep Reinforcement Learning (DRL) is proposed
in this work. To this end, a numerical simulation of the cart-
pole swing-up problem is used as a case study. The agent is
trained with the Deep Deterministic Policy Gradient (DDPG).
Then, its sensibility is evaluated by modifying the parameters of
the physical system. Subsequently, the presence of dry friction
between the cart and the horizontal plane is considered for testing
the robustness of the agent after employing the post-training
method proposed. The numerical results found demonstrates the
broad potential of the methodology considered in this paper.

Index Terms—Deep reinforcement learning, DDPG, robust
control, robotics, mechatronics

I. INTRODUCTION

The development of controllers for nonlinear systems is
extremely challenging, time-consuming, and in many cases, an
infeasible task. The traditional engineering approach consists
of analytically deriving the system governing equations and
manually adjusting the parameters of the control system to
fit some measured physical parameters. Advanced expertise in
applied mathematics, dynamical systems theory, computational
methods, mathematical modeling, optimization frameworks,
and operator-assisted algorithmic tuning of control parameters
is then required [1]. Unfortunately, this approach results to be
restrictive for highly uncertain or difficult to model systems.
Because of the reality gap caused by the model bias, this
often yields an unfeasible control system. Deep Reinforcement
Learning (DRL) is a data-driven approach useful for the devel-
opment of control systems. Given the generalization capability
of Artificial Neural Networks (ANN), this framework has the
potential to overcome the problems mentioned before. By
following the methodology proposed in this work, the use
of ANN also allows for controlling systems with parameters
uncertainty.

II. METHODOLOGY

The reinforcement learning framework consists of learning
based on interaction instead of mathematically modeling the
system to be controlled. For any time t, the agent collects
an observation s and generates action a. The state of the
environment changes to s′ and produces a scalar reward
signal r. This cycle is repeated until the final instant of
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time tf is reached. Recently, RL combined with state-of-
art deep learning techniques has attracted much attention to
robotics [2]. In this context, the agent is the controller, and the
robot and its surroundings are the environment [3]. The latter
provides the agent with the instantaneous state and reward.
The goal of the agent is to find the policy that optimizes the
cumulative reward obtained during a complete episode. The
present work uses the DDPG [4] algorithm to train an agent
with an actor-critic architecture. That is, the agent is composed
of two neural networks, the actor πππφ, and the critic Qθ. The
task of πππφ is to map any S to an action a. On the other hand,
the critic addresses to learn the optimal Q-value function of
the environment. That is, a function predicting the cumulative
reward of the agent for a given policy, s, and a. This is done
with a supervised learning approach, employing the dataset of
experiences generated by the interaction of the agent and the
environment. Each of its entries has the form [s, a, r, s′, a′].
The loss function L used is the mean squared Bellman error.

L =
1

D

D∑
i=1

(yi −Qθ (si,ai))
2 (1)

where D is the size of a randomly sampled mini-batch of the
dataset, and y is the target value function defined as

yi = ri + γQθ′ (s
′
i, πφ′ (s′i)) (2)

Then, after updating the critic Qθ, this is differentiated with
respect to φ, the parameters of πππφ in order to compute the
optimal gradient for the parameters ∇∇∇πφ

.

∇∇∇πφ
=

1

D

D∑
i=1

∇∇∇πφ
Qθ (si, πφ (si))∇φπππφ (si) (3)

Both Qθ and πππφ are updated by Polyak averaging with the
precedent parameter values. The scope of this work is to test
the robustness of the trained actor neural network πππφ when
modifying the environment properties. Then, to improve the
robustness, a post-training of the agent is proposed and tested.
That is, a subsequent training of πππφ to expand the network
optimal behavior space is performed.

III. NUMERICAL RESULTS

The environment employed to test the methodology is the
cart-pole shown in Fig. 1. The goal of the agent is to find
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Fig. 1. The cart-pole environment.
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Fig. 2. Learning curves of the agent; a) cumulative reward per episode of
training; and b) The five episodes moving window average cumulative reward.

the optimal policy capable of swinging up the pole in a given
interval of time by applying a lateral force Fc to the cart. The
system is trained with the fixed values µ = 0, mc = 1(kg),
mp = 1(kg), and Lp = 0.1(m). The force Fc is constraint to
be in the interval [−20, 20] (N). The optimal policy is found
after 435 episodes of training, and the respective learning
curve is shown in Fig. 2. The response of the trained agent in
the modified environments is shown in Fig. 3. The agent can
perform the swing-up task in the presence of equal increment
in the masses and length up to 25% and equal decrement up
to 35%, proving to be robust as is. The agent can perform
the swing-up task in the presence of joint increment in the
masses and length up to 25% and a joint decrement up to 35%,
proving to be robust as well. However, dry friction (µ < 0)
is deleterious for the performance, resulting in an incapable
agent as shown in Case 4 of Fig. 4. We call the initial
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Fig. 3. a) Pole angular position during the swing-up task; and b) Pole angular
velocity during the swing-up task. Case 1: values equal to the training; Case
2: 25% increment in all the parameter values except friction; Case 3: 35%
decrement in all the parameters except friction.

agent, Agent A. Then, including dry friction, a second training
process with the environment is carried out. The resulting

TABLE I
CASES OF ANALYSIS FOR THE PERFORMANCE OF AGENTS A AND B IN

PRESENCE OF DRY FRICTION.

Case Agent µ mc (kg) mp (kg) Lp 1 (m)
∑
r

4 A 0.3 1 1 0.1 -341.48
5 B 0.3 1 1 0.1 -74.71
6 B 0 1 1 0.1 -81.51
7 B 0.8 1 1 0.1 -78.55

agent is called Agent B. Table I reports the behavior of agents
A and B in different configurations of the environment. The
higher the cumulative reward

∑
r for the agent, the better its

performance. Fig. 4 shows the angular position and angular
velocity of the pole during an episode interaction. It can be
seen that agent B performs the task under both environments
with and without dry friction. This proves the approach to be
feasible to develop robust control systems.
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Fig. 4. Pole angular position and angular velocity for cases 4, 5, and 7; a)
Pole angular position during the swing-up task; and b) Pole angular velocity
during the swing-up task.

IV. CONCLUSIONS

In this work, the sensitivity of a controller developed with
the DDPG algorithm was studied. Additionally, a post-training
methodology was proposed to increase the robustness of the
said control system. The cart-pole system was considered
as the case study. The sensitivity analysis shows that the
controller can perform the swing-up task for magnitute modifi-
cations of physical parameters as high as 35%. The presence of
dry friction proves to be detrimental to the controller. However,
the proposed methodology results in a new controller capable
of operating effectively in environments with or without dry
friction. Therefore, the present methodology is promising for
future developments in robotics and mechatronics research.
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