
Quasi-Unsupervised Fruit Counting Using Domain Adaptation and
Spatial Consistency

1st Enrico Bellocchio
Department of Engineering

University of Perugia
Perugia, Italy

enrico.bellocchio@gmail.com

2nd Gabriele Costante
Department of Engineering

University of Perugia
Perugia, Italy

gabriele.costante@unipg.it

3rd Silvia Cascianelli
Department of Engineering ”Enzo Ferrari”

University of Modena and Reggio Emilia
Modena, Italy

silvia.cascianelli@unimore.it

4th Mario Luca Fravolini
Department of Engineering

University of Perugia
Perugia, Italy

mario.fravolini@unipg.it

5th Paolo Valigi
Department of Engineering

University of Perugia
Perugia, Italy

paolo.valigi@unipg.it

Abstract—Autonomous robotic platforms can be effectively
used to perform automatic fruits yield estimation. To this aim,
robots need data-driven models that process image streams and
count, even approximately, the number of fruits in an orchard.
However, training such models following a supervised paradigm
is expensive and unpractical. Extending pre-trained models to
perform yield estimation for a completely new type of fruit
is even more challenging, but interesting since this situation is
typical in practice. In this work, we combine a State-of-the-Art
weakly-supervised fruit counting model with an unsupervised
style transfer method for addressing the task above. Experiments
on datasets collected in four different orchards show that the
proposed approach is more accurate than the supervised baseline
methods.

Index Terms—Agricultural Automation, Robotics in Agricul-
ture and Forestry, Visual Learning

I. INTRODUCTION

Among the orchard management-related processes, yield
estimation plays a crucial role in harvesting operations plan-
ning and income prevision. State-of-the-Art works [1], [2]
already demonstrated how to make yield sampling cost-
effective by using autonomous robots to collect images of
the orchard. However, fruit counting is still an open issue.
Recently proposed methods [3], [4] rely on heuristics and
strong supervision for fruit detection and counting. This limits
the application of such methods in real agricultural contexts
because of the required costs and time. For this reason, we
follow the trend of applying the weak supervision paradigm for
yield estimation [5]. This reduces the labelling work and time
required to train the counting model. Although being a more
flexible approach, neither the weakly supervised paradigm
guarantees that the counting model would work for fruits
different from those used in training. However, the ability to
generalize on different types of orchards is interesting from a
commercial point of view.

In the sight of this, in this work we propose to combine
the recently proposed weakly supervised fruit counting model
presented in [5] with an unsupervised style transfer method for

Fig. 1: After being trained on source orchard images with
weak ground truth (WS in the picture) and transformed target
orchard images with no ground truth, QU-COUNT can directly
count fruits from target orchard images.

tackling the yield estimation problem in scenarios in which no
ground truth is available. In this sense, our proposed approach
is quasi-unsupervised (see Fig. 1). In particular, we jointly
train a Cycle-Generative Adversarial Network (C-GAN) [6]
to transform images from a source orchard S into a different
target orchard T , and a Presence-Absence Classifier (PAC) to
discriminate between images that contain fruits and images
that do not contain fruits. The trained PAC generates the
weak supervision signal for the counting block, that is now
able to work directly on images from the target orchard.
The experimental results obtained on four different orchards
demonstrate that the proposed approach gives performance
comparable to a fully-supervised approach. We name our
approach QU-COUNT.

II. PROPOSED APPROACH

Ideally, we want a network able to learn what and how
to count by only relying on fruit presence-absence labels.
As shown in [5], this could be achieved with a multi-branch
architecture whose optimization objective is constrained by a
Presence-Absence Classifier (PAC). In this work, we follow
the strategy proposed in [5]. In particular, we rely on a Multi-
branch Counting CNN (MBC-CNN), whose branches operate
on different image tiles extracted from the original image
at three different scales, i.e., the full image, and the 4 and



16 non-overlapping crops. Each branch regresses the number
of fruits for a given tile. During the optimization phase, the
count estimates at each level are summed, and a constraint
is imposed to ensure that the total count at each scale is
consistent with the others.

We design the QU-COUNT approach with the capability
to adapt the PAC trained on S to T without the need for
any supervision information associated with the target domain.
To do this, we take advantage of the recent Cycle Genera-
tive Adversarial Network (GAN) architecture [6] to achieve
domain translation. The Cycle GAN (C-GAN) is combined
during the optimization phase to adapt the PAC to the target
domain. The aim of Cycle GAN is to learn two mapping
functions M : S → T and N : T → S that translate
images from one domain into the other. However, we argue
that translating images with the C-GAN framework is not
sufficient to guarantee good performance on the target domain.
Hence, we devise an objective function whose aim is to adapt
the PAC to T , imposing a cross-entropy loss functions on the
three images produced during the S → T → S cycle.

III. EXPERIMENTS

The approach is evaluated on four different datasets con-
taining images of three fruit species: two sets contain almond
images while the other ones provide olive and apple frames.
Apples and one of the almond dataset are presented in [3].
The olive images and the second almond set are presented in
[5]. To highlight the advantages introduced by QU-COUNT,
we compare it against different baselines. The first one is the
work introduced by [3], we name this method Bargoti et al. We
also compare QU-COUNT against WS-COUNT, a state-of-
the-art weakly-supervised approach presented in [5]. Another
important baseline is the MBC-CNN optimized with the PAC
trained on the source domain, this approach is referred to as
MBC-CNN+PACS . We also consider a baseline that does not
adapt the PAC, and we refer to it as MBC-CNN+GAN. In
each test, we compute the Root Mean Square Error (RMSE)
between the predicted count values and the ground truth ones.

A. Results

The quantitative results are provided in TABLE I. Each
one of the table blocks refers to the set of tests associated
with one of the four possible target domains. The approach
proposed by Bargoti et al. [3] achieves the lowest errors in
all the experiments where the source and the target domains
are the same, with the only exception of the OL → OL
test, where WS-COUNT obtains slightly better performance.
These results are expected since the approach from [3] uses
strong supervision signals (i.e., fruit bounding boxes) during
training, hence, fruit detection is more robust. On the other
hand, WS-COUNT and MBC-CNN+PACS score similarly.
However, when a different target domain comes into play, the
error of the aforementioned approaches rapidly increases in
almost all cases. As an instance, consider, the AP → AL and
OL → AL experiments, where the RMSE of Bargoti et al. [3],

Target domain T : Almonds (AL)
Approach AL → AL ALIS → AL AP → AL OL → AL
Bargoti et al. 2.19 3.24 6.69 6.40
WS-COUNT 4.39 4.9 6.71 6.93
MBC-CNN+PACS 3.15 4.07 6.62 6.64
MBC-CNN+GAN n.a. 6.63 4.93 5.55
QU-COUNT n.a. 4.14 3.69 4.20

Target domain T : AlmondsISAR (ALIS)
Approach ALIS → ALIS AL → ALIS AP → ALIS OL → ALIS

Bargoti et al. 1.33 2.18 3.11 3.45
WS-COUNT 2.2 2.58 3.27 3.2
MBC-CNN+PACS 1.96 2.43 3.45 3.62
MBC-CNN+GAN n.a. 3.35 2.69 2.79
QU-COUNT n.a. 2.49 2.49 2.62

Target domain T : Apples (AP)
Approach AP → AP AL → AP ALIS → AP OL → AP
Bargoti et al. 1.55 3.83 2.32 3.72
WS-COUNT 2.58 4.66 4.67 4.36
MBC-CNN+PACS 2.36 4.98 4.75 4.82
MBC-CNN+GAN n.a. 3.00 3.38 3.51
QU-COUNT n.a. 2.81 2.56 2.60

Target domain T : Olives (OL)
Approach OL → OL AL → OL ALIS → OL AP → OL
Bargoti et al. 2.32 4.16 3.35 4.34
WS-COUNT 2.21 5.75 5.81 5.13
MBC-CNN+PACS 2.24 5.97 5.57 4.72
MBC-CNN+GAN n.a. 4.55 4.77 4.87
QU-COUNT n.a. 3.49 2.80 3.32

TABLE I: Quantitative results achieved by the different ap-
proaches in various source-target tests. Each refers to tests
on a given target domain. Reults are expressed with RMSE
metric.

WS-COUNT [5] and MBC-CNN+PAC are fairly high, i.e., the
count is more than 6.00 units different from the ground truth
one. Conversely, QU-COUNT provides lower errors, which
proves that adapting the PAC gives considerable benefits.

IV. CONCLUSION

In this work, we introduced QU-COUNT, a novel frame-
work whose objective is to perform fruit counting in scenarios
for which no knowledge is available by exploiting a source
domain where only weak presence-absence labels are given.

Future works will focus on improvements of the image
translation process to ease the adaptation of the PAC and make
it more robust to scenarios that considerably differ from the
source one.
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