
Feedback Linearization Robot Control based on
Gaussian Process Inverse Dynamics Model

Alberto Dalla Libera
Dept. of Information Eng.

Università di Padova
Padova, Italy

dallaliber@dei.unipd.it

Fabio Amadio
Dept. of Information Eng.

Università di Padova
Padova, Italy

amadiofa@dei.unipd.it

Ruggero Carli
Dept. of Information Eng.

Università di Padova
Padova, Italy

carlirug@dei.unipd.it

Diego Romeres
Mitsubishi Electric

Research Laboratories
Cambridge, Massachusetts

romeres@merl.com

Abstract—In this paper, we analyze the implementation of
feedback linearization control scheme based on full data-driven
inverse dynamics models. We made no use of physical models in
the definition of the inverse dynamics, that has been learned
entirely from previously recorded data via Gaussian Process
Regression (GPR). The resulting controller has been tested in a
simulated 7 dof manipulator to solve a trajectory tracking prob-
lem. Different kernel functions have been tested, in particular
we analyzed the performance obtained by Squared Exponential
(SE) kernel and the recently introduced Geometrically Inspired
Polynomial (GIP) kernel. Results show that GIP obtains better
tracking precision and it is more robust w.r.t. the presence of
an initial tracking errors. On the contrary, poor generalization
properties of SE kernel deeply undermine control performance
when the robot is located far from the poses seen during training.

Index Terms—feedback linearization control, inverse dynamics
estimation, gaussian process

I. INTRODUCTION

Feedback linearization offers the possibility to design
robot controllers that could be considerably more precise
and energy-efficient than standard linear feedback control
[1]. Its major drawback is that it needs a precise inverse
dynamics model to work properly. However, for many systems,
such accurate models cannot be obtained using standard
rigid body formulation due to unmodeled non-linearities or
system misspecifications. Gaussian Process Regression (GPR)
[2] provides a powerful data-driven technique for solving
the inverse dynamics identification problem, overcoming the
aforementioned limitations. In this work, we analyze the
implementation of a feedback linearization control scheme
based on a GP inverse dynamics model [3]. In particular, we
show the importance that the choice of the kernel function
plays in the success of the proposed controller. We compare the
results obtained by the Squared Exponential (SE) kernel [2], a
standard choice in many GPR applications, and the recently
introduced Geometrically Inspired Polynomial (GIP) kernel [4].
The implemented controller have been tested in a simulated
7 degrees of freedom (dof) manipulator to solve a trajectory
tracking problem. The remainder of the paper is organized as
follows. In Sec. II, we provide background notions about robot
dynamics and control, as well as GPR. In Sec. III we describe
the GP-based feedback linearization controller. Experiments
are reported in Sec. IV, and conclusions are drawn in Sec. V.

II. BACKGROUND

In this section, we provide background notions about
robot dynamics, as well as introducing the trajectory tracking
problem and describing feedback linearization control. Then,
we describe GPR for inverse dynamics identification, detailing
the black-box priors adopted in this work.

A. Robot dynamics and control

Consider a mechanical systems with n dof, and denote with
qt P Rn its generalized coordinates at time t; 9qt and :qt are,
respectively, the joint velocities and the accelerations. The
generalized torques are denoted with τ t P Rn. We will denote
explicitly the dependencies on t only when strictly necessary.
Under rigid body assumptions, the dynamics equations of
mechanical systems are described by the following matrix
equation

Bpqq:q ` cpq, 9qq ` gpqq ` F p 9qq “ τ , (1)

where Bpqq is the inertia matrix, while cpq, 9qq, gpqq, and
F p 9qq accounts, respectively, for the contributions of fictitious
forces, gravity, and friction. For compactness, we introduce
also npq, 9qq “ cpq, 9qq ` gpqq ` F p 9qq. In the following we
will denote with B̂pqq and n̂pq, 9qq the estimates of Bpqq and
npq, 9qq. The trajectory tracking problem consists in designing
a controller able to follow a reference rt, 9rt, :rt. In feedback
linearization control the control input is

a “ :r `Kpe`Kd 9e, (2a)

τ “ B̂pqqa` n̂pq, 9qq. (2b)

Assuming that the model is known exactly, i.e., B̂pqq “ Bpqq
and n̂pq, 9qq “ npq, 9qq, combining (1) and (2) and recalling
that Bpqq is invertible it can be proved that the dynamics of
the tracking error is described by the following second order
linear differential equation,

:e`Kd 9e`Kpe “ 0, (3)

which is asymptotically stable if Kp ą 0 and Kd ą 0.



B. GPR for inverse dynamics identification

In GPR each joint torque is modeled with a distinct and inde-
pendent GP. Consider an input/output dataset D “

 

ypiq, X
(

,
where ypiq P RN is a vector collecting N measurements of
τ piq, the i-th joint torque, while X “ txt1 . . .xtN u; xt is the
vector collecting the position, velocity and acceleration of the
joints at time t, hereafter denoted GP input. The probabilistic
model of D is
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“ f piqpXq `wpiq,

where wpiq is i.i.d. Gaussian noise with standard deviation σi,
while f piqp¨q is an unknown function modeled a priori as a GP,
namely, f piqp¨q „ Np0,KpiqpX,Xqq. The covariance matrix
KpiqpX,Xq is defined through a kernel function kpiqp¨, ¨q.
Specifically, the covariance between f piq

`

xtj

˘

and f piq pxtlq,
i.e., the element of KpiqpX,Xq at row j and column l, is
equal to kpiq

`

xtj ,xtl

˘

. Given a general input location x˚, the
maximum a posteriori estimator is

f̂ piqpx˚qq “ Kpiq px˚, Xqαpiq, where (4a)

αpiq “ pKpiq pX,Xq ` σ2
i Iq

´1ypiq, (4b)
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˘

“
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kpiq
`
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. . . kpiq
`

x˚,xtN

˘

ı

, (4c)

see [2] for details. In this work, we will consider the two
following kernels:
- Squared Exponential kernel (SE):
The SE kernel [2] defines the covariance between samples
based on the distances between GP inputs, and it is defined
by the following expression

kSE

`

xtj ,xtl

˘

“ λe
´‖xtj

´xtl‖
2

Σ , (5)

where λ is a scaling factor and Σ is a positive definite diagonal
matrix which defines the norm used.
- Geometrically inspired Polynomial kernel (GIP):
This kernel is based on the property that the dynamics equations
in (1) are a polynomial function in :q, 9q and q̃, where q̃ is a
transformation of q. Specifically, q̃ is the vector composed by
the concatenation of the prismatic coordinates and the sines
and cosines of the revolute coordinates. As proved in [4], the
elements of :q have maximum relative degree one, while the
ones of 9q and q̃ have maximum relative degree two. Then,
the GIP kernel is defined through the sum and the product of
different polynomial kernel [5], denoted as kppqP p¨, ¨q, where p
is the degree of the polynomial kernel. In particular, we have

kGIP

`

xtj ,xtl

˘

“ (6)
´

k
p1q
P

`

:qtj , :qtl
˘

` k
p2q
P

`

9qtj , 9qtl
˘

¯

kQ
`

q̃tj , q̃tl
˘

,

where, in its turns, kQ is given by the product of polynomial
kernel with degree two, see [4] for all the details. In this way,
the GIP kernel allows defining a regression problem in a finite
dimensional function space where (1) is contained, leading to
better data-efficiency w.r.t. the SE kernel.

III. GP-BASED FEEDBACK LINEARIZATION CONTROL

In this section, we describe the implemented controller,
hereafter denoted as GP Feedback Linearization (GP-FL). GP-
FL estimates directly the control input in (2) using the GP
models. The estimate of (2b) at time t is obtained evaluating
the n GP models with GP-input given by the concatenation of
qt, 9qt and at “ :rt `Kpet `Kd 9et. Then, we have

τ t “

»

—

–

f̂ p1qpqt, 9qt,atq

...
f̂ pnqpqt, 9qt,atq

fi

ffi

fl

, (7)

where, with abuse of notation, we pointed out explicitly the
different components of the GP-input, instead of using their
concatenation.

IV. EXPERIMENTS

Experiments have been carried out in PyBullet [6], simulating
a 7 dof manipulator, with a control frequency of 1000 Hz.
First, we collected data for inverse dynamics identification
by employing a hand-tuned PD controller to track a random
reference trajectory. For each joint, the reference is 50 seconds
of Gaussian noise filtered with a low-pass filter (with cut
frequency 1 Hz). The dataset used to train the GP models is
composed of 5000 samples, obtained downsampling the data
collected. Two different GP inverse dynamics model have been
trained on the recorded data-set: the first employs a SE kernel,
while the second a GIP kernel. For each dof j “ 1, . . . , 7, the
reference joint position is given by rpjqt “ 0.165 t sinp2πFj tq
where the frequencies Fj are randomly sampled from N p0.5, 1q.
The control horizon has been set to 5 [s]. In Fig. 1, and 2
are reported, respectively, the evolution of the joint angles and
control torques obtained by the two controllers, starting with
initial tracking error null. One can note that GP-FL controller
with SE kernel works properly when the amplitudes of the
reference oscillations are low, but it starts failing suddenly
towards the end of the control horizon, when null torques are
given to all joints. This is due to the fact that when the reference
trajectory crosses regions that are far from the training samples
the GP estimator based on SE kernel fails to provide meaningful
predictions. Indeed, the control torques goes to zero, which is
the prior mean [2]. Instead, thanks to the better generalization
of GIP kernel, the controller based on GIP kernel is more
robust and it is always able to track the desired reference, also
in unexplored areas of the state-space.

We have tested the two controllers also in presence of initial
tracking errors. Results highlight the same issues. The estimator
based on SE kernel is not effective. In fact, the initial error
make the magnitude of the at term so high that its distance
from accelerations observed during training is big, leading to
null torques. Instead, GIP kernel has no problem in handling the
presence of a starting error. In Fig. 3, we plotted the tracking
errors obtained with the controller based on GIP kernel and
the one based on the true model, when starting with an initial
error of 5.73 [deg] for all the joints. In both cases the evolution
of the errors follows (3), confirming the effectiveness of the
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Fig. 1. Reference and actual joint trajectories obtained by the GP-FL controllers with SE kernel and GIP kernel.
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Fig. 2. Applied torques obtained by the GP-FL controllers with SE kernel and GIP kernel.
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Fig. 3. Error evolution obtained by the GP-FL controllers with GIP kernel and by the FL controller based on the true model.

proposed solution. Limited oscillations around zero can be
observed with the controller based on GIP when the reference
trajectory is far from the training data.

V. CONCLUSIONS

We analyzed the application of GP-based inverse dynamics
models for feedback linearization control of robotic systems,
focusing on the effects of the kernel adopted. In particular,
we compared the performance obtained by using SE or GIP
kernels in a simulated trajectory tracking problem. GP-FL
control with SE kernel showed critical problems related to the
poor generalization properties. On the contrary, GIP kernel was
effective in learning inverse dynamics models that can be used
for the design of GP-based feedback linearization control.
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