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Abstract—Feedback Linearization (FL) allows the best control
performance in executing a desired motion task when an accurate
dynamic model of a fully actuated robot is available. However,
due to residual parametric uncertainties and unmodeled dynamic
effects, a complete cancellation of the nonlinear dynamics by
feedback is hardly achieved in practice. In this paper, we sum-
marize a novel learning framework aimed at improving online
the torque correction necessary for obtaining perfect cancellation
with a FL controller, using only joint position measurements. We
extend then this framework to the class of underactuated robots
controlled by Partial Feedback Linearization (PFL), where we
simultaneously learn a feasible trajectory satisfying the boundary
conditions on the desired motion while improving the associated
tracking performance.

Index Terms—Robot Learning, Feedback Linearization, Gaus-
sian Process Regression, Underactuated Robots, Optimal Control

I. INTRODUCTION

Feedback Linearization (FL) is a widely used control design
technique in fully actuated robots that allows to reach a precise
execution of the desired motion tasks. Thanks to the perfect
cancellation of all nonlinearities in nominal conditions, the
trajectory tracking problem can be easily addressed in the
resulting linear and input-output decoupled domain, achieving
thus arbitrarily fast, exponential convergence of the tracking
error. Indeed, a very accurate dynamic model of the robot is
strictly required to obtain such a control performance.

Similarly, for the case of underactuated robots, it is possible
to design a Partial Feedback Linearization (PFL) law so as
to exactly linearize a suitable part of the model, either the
actuated dynamics (collocated PFL) or the passive one (non-
collocated PFL) [1], [2]. For such systems, one needs to define
also a dynamically feasible trajectory for the uncontrolled
variables, satisfying boundary conditions and additional con-
straints of the desired motion task. Optimization techniques
can be used to address this problem off line, but their success is
based again on the availability of an accurate dynamic model.

In this framework, one can improve performance in execu-
tion of arbitrary motion trajectories by working on a better
parametric identification of the robot dynamic model [3], by
resorting to non-parametric regression techniques [4], or by ad-
dressing the inaccuracy issues directly at the control level [5].
In general, these approaches require an initial offline phase
which, in case of structural changes of operative conditions
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(e.g., handling of an unknown payload or a permanent effect
due to mechanical wearing), must be repeated from scratch.

In [6], we have introduced an online learning strategy that
greatly improves the trajectory tracking accuracy of FL control
of fully actuated robots under large model mismatches, using
only joint position measurements and avoiding the resort to
noisy torque sensors. The aim of this paper is to review the
main idea of our work and to present an extension of the
method that deals with the problem of underactuation [7].

The paper is organized as follows. In Sec. II, we recap
how model mismatches influence the FL control law and the
resulting closed-loop dynamics in fully actuated robots, while
the proposed learning strategy is summarized in Sec. III. In
Sec. IV and V we formulate the problem and, respectively,
illustrate the extension of our learning strategy for underactu-
ated robots under collocated PFL control. Simulation results
are reported in Sec. VI for a 7R KUKA iiwa robot and for
the Pendubot, a 2R robot moving in the vertical plane with
passive second joint. Conclusions and ongoing activities are
briefly discussed in Sec. VII.

II. FULLY ACTUATED ROBOTS

The dynamics of a n-dof fully actuated robot is given by

M(q)q̈ + n(q, q̇) = τ , (1)

with q, q̇, q̈ ∈ Rn being, respectively, the joint position,
velocity and acceleration vectors, M ∈ Rn×n is the positive
definite inertia matrix, and n ∈ Rn is the Coriolis, centrifugal,
and gravity vector (possibly including also friction terms). For
such system, the input torque τ ∈ Rn can be chosen as the
nonlinear feedback law τFL(q, q̇) that cancels all dynamic
terms in (1)

τ FL = M(q)u+ n(q, q̇), (2)

where u ∈ Rn is a desired joint acceleration. In principle, with
a perfect knowledge of the robot dynamic model, applying the
FL law (2) yields a linear system of n decoupled chains of
double integrators, i.e.,

q̈ = u. (3)

To track a desired smooth trajectory qd(t), the control design
is completed by choosing u = q̈d+KD(q̇d−q̇)+KP (qd−q),
with diagonal PD gains KP , KD > 0.



In practice, because of uncertainties in the nominal model
parameters used by the FL law (2), and due to the additional
presence unmodeled dynamics, the obtained closed-loop sys-
tem will not be described by (3). Taking explicitly into account
model uncertainties, we can write the actual inertia matrix M
and the vector n as

M(q) = M̂(q) + ∆M(q) (4)
n(q, q̇) = n̂(q, q̇) + ∆n(q, q̇) (5)

where M̂ and n̂ are the nominal quantities (those that can be
used in (2), expressing our a priori knowledge of the system),
while ∆M and ∆n are perturbation terms characterizing the
uncertainties. Note that ∆n can incorporate also unmodeled
dynamic terms.

If we apply the FL control law (2) with the nominal values

τ̂ FL = M̂(q)u+ n̂(q, q̇), (6)

to the real system (1), considering eqs. (4) and (5), we obtain

q̈ = u+
(
M−1(q)M̂(q)− I

)
u+M−1(q)∆n(q, q̇) (7)

= u+ δ(q, q̇,u). (8)

Thus, δ(q, q̇,u) is a nonlinear function that accounts for all
modeling mismatches as well as any unmodeled dynamics.

III. LEARNING FOR FULLY ACTUATED ROBOTS

The learning framework presented in [6] can be applied
to torque-controlled robots and is based on the idea that, by
comparing the actual robot motion with the FL prediction, it
is possible to reconstruct online the needed dynamic model
correction without the use of torque measurements.

In a digital implementation with sampling time Tc, sup-
pose that xk = (qk, q̇k)T is the current robot state at
t = tk = kTc and we want to reach a desired state xd,k+1 =
(qd,k+1, q̇d,k+1)T at t = tk+1. Using our preferred linear
controller (e.g., a PD with feedforward term), we compute
the acceleration command uk that should do the task if the
FL controller was the perfect one. We impose thus the joint
torque τ̂ FL in (6) obtaining the closed-loop dynamics

M(qk)q̈ + n(qk, q̇k) = τ̂ FL,k

= M̂(qk)uk + n̂(qk, q̇k). (9)

However, due to the uncertain dynamics, the robot will reach a
different state xk+1 = (qk+1, q̇k+1). At this point, given the
performed robot motion, one can reconstruct (by numerical
differentiation) the robot acceleration q̈k and then estimate the
missing torque that would have been needed in the nominal
FL-based control law in order to compensate the unmodeled
dynamics. Plugging q̈ = q̈k in (9), we obtain after some
manipulation

M̂(qk)(uk − q̈k) = ∆M(qk)q̈k + ∆n(qk, q̇k). (10)

Using the a posteriori computable left-hand side of eq. (10),
a regressor function ε(·) can be introduced in the FL control

law, through which it is possible to progressively compen-
sate the unknown perturbations on the right-hand side. In
order to exploit the data acquired so far, a moving dataset
D = {(Xi,Yi) |i = 1, . . . , nd} can be constructed, where nd
is the number of its elements, with input Xi = (qi, q̇i, q̈i),
and output Yi = M̂(ui−q̈i)+εi. In Yi, the torque correction
εi applied to the robot is also taken into account, in order to
preserve dataset consistency. Moreover, when we predict the
compensating torque εk at time tk, the regressor input will
be composed by the current robot state xk and by the last
commanded acceleration uk generated by the chosen closed-
loop controller.

As a result, the new FL-based control input τ FL,k will be
the sum of the nominal FL torque and of the online prediction
by the regressor ε(·), i.e.,

τ FL,k = τ̂ FL,k + εk = M̂(qk)uk + n̂(qk, q̇k) + εk.

IV. UNDERACTUATED ROBOTS

Consider a n-dof robot with generalized coordinates q ∈ Rn

and m < n actuators. The robot dynamics can be partitioned
as (see, e.g., [8])

Maa(q)q̈a +Mau(q)q̈u + na(q, q̇) = τ

Mua(q)q̈a +Muu(q)q̈u + nu(q, q̇) = 0,

where q = (qa, qu), qa are the m dofs actuated by τ ∈ Rm,
and qu are the n − m passive joints. The inertia matrix M
and the nonlinear term n are partitioned accordingly.

Given an accurate knowledge of the robot model, it is
possible to use nonlinear feedback to exactly linearize part
of the system dynamics, namely the actuated one. Such a
collocated PFL controller is always well defined and takes
the form [1]

τ PFL =
(
Maa −MauM

−1
uuMua

)
u+ na −MauM

−1
uunu,

(11)
where u ∈ Rm is the desired acceleration of the actuated
joints. The control law (11) results in m decoupled chains of
double integrators for the linear part, leaving unchanged (and
still nonlinear) the passive one:

q̈a = u

q̈u = −M−1
uu (nu +Muau).

Taking now into account model uncertainties, an imperfect
cancellation of dynamic terms will result when applying the
PFL law (11) based on the nominal system dynamics. The
perturbed closed-loop system becomes

q̈a = u+ δa(q, q̇,u)

q̈u = −M̂
−1

uu (n̂u + M̂uau) + δu(q, q̇,u),

where δa and δu represent the effect of modeling mismatches,
respectively on the actuated and on the passive subsystems. In
the latter, we have explicitly isolated the known nominal terms.

Indeed, we can correct δa similarly to the fully actuated
case in Sec. III, using a regressor εa. However, because of
the presence of the perturbation δu on the passive dynamics,
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Fig. 1. Block diagram of the control framework for underactuated robots.

the accurate tracking of a desired trajectory for the actuated
dofs will not be sufficient for complete realization of a desired
motion task. A dynamically consistent trajectory should be
planned also for the passive joints, typically solving a con-
strained optimization problem. The presence of uncertainty in
the model will prevent producing such a feasible solution.

V. LEARNING FOR UNDERACTUATED ROBOTS

To compensate for the model mismatch δu, we developed
an iterative learning procedure [7], similarly to what is done
in [9], [10]. However, in these latter works the reference
trajectory is never adjourned using an updated model; thus,
when working with inaccurate nominal dynamics, the com-
puted trajectory will typically be unfeasible even in the ideal
case of a correct partial feedback linearization law.

Instead, the perturbation δu on the passive dynamics can
be approximated using a second regressor εu, comparing
the acceleration of the passive part of the system with the
acceleration predicted by the nominal model. Given an approx-
imation of the actual acceleration q̈a,k, one can compute the
acceleration associated with the nominal model of the passive
joints as

q̈pred
u,k = −M̂

−1

uu,k(n̂u,k + M̂ua,kq̈a,k).

A new datapoint can be generated at time tk by comparing
the acceleration estimated numerically with the one predicted
by the nominal model, i.e.,

Xu,k = (qk, q̇k, q̈a,k); Yu,k = q̈u,k − q̈
pred
u,k .

The dataset is incrementally built during each trial, and the
regressor εu is employed during each trajectory planning
phase so as to work a successively more accurate estimation
of the real system dynamics.

A block diagram of the complete learning control frame-
work for the underactuated case is shown in Fig. 1. Initially,
for a desired motion task, a reference trajectory is generated
for the system using the best available nominal model. Then,
the first trial is executed, during which the PFL-based law is
corrected online to compensate for the presence of δa. At the
end, a new reference trajectory is computed taking into account
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Fig. 2. Comparison between the two different control modalities: using the
nominal dynamic model (red line) and using our learning method (blue line).
From top-left to down-right: the absolute values of joint position error of the
first, second, fourth joint and the 3D path realized by the end effector.

Fig. 3. A KUKA LBR iiwa realizing a trajectory tracking task with the
nominal controller (right, red) and with the proposed controller (left, blue).

the approximation of the residual term δu, and the motion is
performed again. These steps are iterated until model errors
converge to zero and the task is correctly executed.

VI. NUMERICAL RESULTS

In order to validate the presented framework, simulations
have been performed for a fully actuated ans and underactuated
robotic platform.

A. Fully actuated case

Our learning method has been tested first on a simulated
7R KUKA LBR iiwa performing a trajectory tracking task. In
particular, the first six joints should follow a sinusoidal path,
while the last one should remain at rest. We have analyzed the
tracking performance of this robot, whose dynamic parameters
are reported in [3], [11], for a deviation of about 20% from
their nominal values. We compared the results with and with-
out the use of the proposed method. The FL torque correction
ε is approximated using Gaussian Process regression [12]. The
resulting joint errors and the end-effector Cartesian path with
and without the use of our online learning method are reported
in Fig. 2. Snapshots of the obtained robot motion are shown
Fig. 3: our method sensibly reduces the tracking error.
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Fig. 4. Pendubot reference joint trajectories (dashed lines) and actual positions
(solid lines) during each iteration. At the top left, it is reported the position
error of the actuated joint at Iteration 1: in blue, when the correction is applied,
while in red when only the PD correction is employed.

Fig. 5. The Pendubot performing the swing-up task. After three iterations,
the robot is capable of reaching the up-up configuration.

B. Underactuated case

The proposed control method has been tested by simulation
on the Pendubot, a 2R robot with a passive second joint and
moving in the vertical plane. The Pendubot should perform
a rest-to-rest swing-up manouver, from the initial downward
equilibrium configuration x0 = (0, 0, 0, 0)T to the up-up con-
figuration xg = (qa, qu, q̇a, q̇u) = (π, 0, 0, 0)T . We considered
a mismatch between nominal and actual model parameters
of about 30%. As for the fully actuated case, any closed-
loop controller could be used in order to generate a reference
acceleration for the PFL. The planning procedure is formulated
as an optimal control problem and solved using a Sequential
Quadratic Programming optimizer [13], including the correc-
tion for the residual term εu in the dynamic constraint. Here,
εu is reconstructed through a Gaussian Process regression.
Three iterations for the actual and the desired joint trajectories
are shown in Fig. 4, together with a comparison of the actuated
joint position error during the first iteration when only the
PD is applied (top left, red curve) and when εa is employed
(blue curve). It is worth noticing that the tracking performance
improves even for the actuated joint at the first iteration.
Moreover, our method perfectly recovers the tracking error
with an handful of trials. Few frames of the final successful
Pendubot motion obtained wirh our learning method are shown
in Fig. 5.

VII. CONCLUSIONS

We have presented a method for online learning of feedback
linearization control without torque measurements for fully
actuated robots, and its extension to underactuated platforms.
In both cases, the correction of the linearizing part of the
torque input converges quite fast to the correct value. This
feature depends mostly on the locality properties of the used
GP regressors, in particular for repetitive tasks in which the
input space is already partially explored.

For fully actuated robots, the method displays large per-
formance improvements which allow to eventually execute
very high precision motion tasks. The presented extension to
underactuated robots is able to solve a complex swing-up task
in just an handful of trials, even with an extremely bad nominal
model.

Despite of the obtained effective results, a limit of the
presented approach concerns the generalization problem. In
particular, it is not straightforward to adapt the actual model
knowledge to different tasks without restarting the learning
procedure from scratch. In order to overcome this problem, we
are currently focusing on the design of novel data-collection
strategies, which consider different trajectories and leverage a
heuristics, such as information maximization, while exploiting
robot redundancy for exploration.
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