
The Human Wearable Perception System:
a Human-Robot Collaboration Application

Claudia Latella1, Lorenzo Rapetti1 2, Yeshasvi Tirupachuri1, Kourosh Darvish1, Silvio Traversaro1, Daniele Pucci1

I. INTRODUCTION

The human-robot collaboration (HRC) is more and more
requested in several occupational fields, e.g., in assembly-
line factories, in medical rehabilitation centers for patients or
for domestic assistance. Although today’s robots are equipped
with sophisticated sensors, their collaborative success is not
always guaranteed by the onboard technologies. The percep-
tion that the robots have of the human collaborators during
a shared task is very limited due to unpredictability of the
human movements [1]. For this reason we introduced a novel
framework endowing robots with the ability to perceive hu-
mans while fulfilling a cooperative task. The framework is
composed of i) a wearable sensor system (i.e., the Xsens
motion tracking system, a pair o portable sensorized shoes
equipped with 6-axis force/torque sensors and tactile insoles
[2], developed at Istituto Italiano di Tecnologia) and ii) a
software architecture implementing a real-time whole-body
kinematics and dynamics estimation. Within this framework,
the robot perceives i) the position and motion of the human, ii)
the exchanged contact forces and iii) the human joint torques
for the task ergonomy control [3]. During the HRC, robots
can make the human ergonomics better by embodying the
human estimated quantities and adjusting their collaborative
interaction strategy.

II. SIMULTANUEOUS KINEMATICS AND DYNAMICS
HUMAN ESTIMATION

We implemented a probabilistic Maximum-A-Posteriori
(MAP) algorithm to compute the simultaneous floating-base
estimation of the human whole-body kinematics and dynamics
(i.e., joint torques, internal forces exchanged across joints,
external forces acting on links). The algorithm is based on
the modelling of the human body as a floating-base dynamic
system of rigid links connected by joints,

M(q)ν̇ +C(q,ν)ν +G(q) = Bτ + J>(q) f x , (1a)

J(q)ν̇ + J̇(q)ν = 0 , (1b)

where M and C are the mass and Coriolis effect matrix,
respectively. G is a term accounting for the gravity effect. B
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is a selector matrix for the joint torques τ . J is the Jacobian
operator that maps the system velocity with the velocity of
the link where is acting the external force f x. The system
configuration is represented by q = (qb, s), being qb the pose
of the base with respect to (w.r.t) a generic inertial frame I
and s the joint position vector capturing the topology of the
system. Terms ν̇ and ν are the acceleration and velocity of the
system, respectively. In particular, ν = (vb, ṡ) where vb is the
base velocity expressed w.r.t. I and ṡ is the joint velocities
vector. Contact constraints are captured in Eq. (1b) .

A model-based algorithm which exploits the velocity cor-
rection and differential kinematics integration has been im-
plemented to compute the human kinematics [4]. To solve
the dynamic estimation problem, the overall system in (1) is
rearranged to an equivalent compact matrix form [5]:[

Y (s)

D(s)

]
d+

[
bY (s, ṡ)

bD(s, ṡ)

]
=

[
y

0

]
, (2)

where Y is a matrix taking into account the measurements of
the sensors, D is a matrix for the system constraints. Bias
terms bY and bD are related to the above-listed matrices,
respectively. The vector d embodies kinematics and dynamics
quantities of the model. The vector y contains values measured
via sensors, i.e., IMUs accelerations and external forces,
y =

[
aIMUs f

x
]>

.
The solution of the problem is provided by solving the

system in (2) for the vector d. The estimator maximizes
the probability of d given the measurements reliability. The
estimator, therefore, looks for the mean of a conditional
probability, i.e., d = µd|y in the Gaussian domain, and its
covariance Σd|y ,[

µd|y,Σd|y
]
= argmax

d
p(d|y) . (3)

A Stack-of-Tasks variant has been recently added to the MAP
computation [6]. The variant solves system in Eq. (2) as a
stack of two tasks, by decoupling the estimation of the torques
from the internal wrenches.

III. A HUMAN-ROBOT COLLABORATION APPLICATION

In the typical HRC scenario, the dynamics of both the
human and the robot plays a crucial role in describing the
system evolution. In recent work, we have presented a coupled-
dynamics formalism that takes into account the dynamics of
the combined system for controlling the robot in a collab-
oration scenarios [3]. Human quantities are provided by a



Fig. 1: Experimental scenario with the iCub humanoid robot standing-up with the help of a sensorized human.

C++ based software architecture designed for the real-time
i) acquisition of human data and ii) estimation of the whole-
body kinematics and dynamics. The architecture streams the
output through the YARP middleware [7] and is suitable for
real-time visualization tools (e.g., ROS RViz). An experimental
setup where the torque-controlled iCub humanoid robot [8] is
involved in a collaborative scenario with a sensorized human
is highlighted in Figure 1. The goal was to perform a stand-
up task with the human’s assistance. The achievement of the
robot controller is accomplished by exploiting the partner
interaction, i.e., the controller makes the robot compliant to
the human actions, and takes advantages of the collaboration
to achieve the robot control objective by minimizing the energy
function of the system. An extension of HRC controllers is the
possibility to achieve the stabilization of the human-related
quantities during the interaction since the full dynamics of
the human partner is embodied in the robot controller. The
extension is suitable for different application fields, e.g., in
industrial environments to reduce the risk of musculoskeletal
disorders or injuries by controlling the human posture and the
whole-body load distribution. It is, therefore, possible to define
ergonomy control objectives by optimizing human ergonomy
achieved via the control of human state. Moreover, when
humans interact with robots, optimal ergonomic interactions
shall minimize metrics that consider also the robot agent.
Different indices for evaluating human ergonomy in litera-
ture are currently recognized by international organizations
[9]. Human energy expenditure has been used to evaluate
ergonomics in workplaces [10], and it was often used in
human-robot interactions scenario [11]–[13]. Similarly, robot
energy consumption optimization is a requirement for robotics
application. Accordingly to the rigid-body modelling in Eq. (1)
, energy expenditure is directly related to joint torques both
for human and robot. In order to embody those principles in
the control framework, it is required to set an optimization
problem that takes into account the dynamics of both the
agents, in order to minimize joint torques. The optimization
can be decomposed into two sub-problems. The first problem
is to find the optimal ergonomic configuration for the system,
and can be solved during the task planning phase to drive the
robot motion. The second problem is the optimization of the
interaction forces during the task execution, and can be solved
online thanks to the human perception system.
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