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Abstract—This work takes inspiration from how human infants
gradually acquire knowledge about how their body works by per-
forming suitable exploratory actions. With the aim of replicating
this important feature also in robotic systems, in this paper we
propose a method that combines adaptive robot control, meant to
determine both the kinematic parameters and the type of joint
(prismatic or revolute), and trajectory optimization, meant to
determine the persistent excitation motions required to acquire
the maximum amount of knowledge about the robot itself. The
ultimate aim is to enable robots to learn and become aware
of their physical-mechanical structure. This would favour the
application of powerful and predictable model-based control
techniques even when only a minimal knowledge of the robot
is available (i.e. the number of joints in our case). A preliminary
validation is carried out through simulations on simple 1 DoF
and 2 DoF robots, showing promising results and potential
improvements to be addressed in the future.

I. INTRODUCTION

In the early 50s, the term motor-babbling was introduced in
the field of cognitive and developmental psychology [1]. This
concept is mainly related to the exploratory actions performed
by children during the first months of their life with the aim
of learning their own body model and structure by associating
the motor commands and the produced actions.

In robotics, a somewhat similar philosophy is adopted by
learning techniques that allow robots to build models of tasks
or of the environment by doing repetitive actions (see [2],
[3] and references therein). In [4], the authors developed
a motor-babbling-based sensory-motor learning for creating
a confidence function of the robot’s perception and motor
behaviour so as to improve its sensory prediction model.

The incredible potential offered by learning approaches to
build accurate models, even for hard-to-engineer tasks, comes
mainly at two costs: tedious data harvesting and long train-
ing times. Usually, an extensive number of experiments are
needed, either from reliable simulations or from the real robot,
to collect sufficient data. Then, to achieve a correct fitting of a
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model to the measured data, time-consuming training sessions
are required. This could be quite problematic when dealing
with complex physical systems, such as robots, because of
the long task execution times and the frequent need for
maintenance or repair by human operators [3]. Furthermore, by
using generic models, learning techniques often disregard the
available basic knowledge about the robot structure (e.g. the
kinematic or dynamic model apart from some parameters as
well as the number of joints).

On the other hand, the methods of adaptive robot control
provide a more computationally efficient and real-time appli-
cable way to control robotic systems even without a perfectly
known model but still making use of what little is known about
the system. It has been shown in [5] that satisfactory tracking
of desired trajectories can be achieved by building an adap-
tation law for the unknown model parameters, based on the
tracking error. In the case of uncertain kinematic or dynamic
quantities, adaptive control allows for a precise control of the
robot by estimating strictly the necessary robot parameters
needed for performing the task, i.e. for zeroing the tracking
error. The condition for the correctness of estimation of all the
unknown parameters of the robot is the so-called “persistent
excitation” properties of the tracked trajectories [6], which
were extensively studied by several authors (see, e.g. [7], [8]).

In this work, we provide an initial glimpse towards a new
possible approach for learning the model of a robot by motor-
babbling using techniques provided by adaptive control. The
presented method can be applied to any serial manipulator
and requires the only knowledge about the number of joints.
Indeed, by building upon the minimum information adaptive
control framework presented in [9], we suppose to be com-
pletely agnostic of both the geometric parameters and the
type of joints of the robot. The kinematic regressor, written
using the modified Denavit-Hartenberg (DH) parametrization
presented in [9], is employed to perform an optimization-based
computation of the persistently exciting trajectories needed
for parameter estimation convergence. Thus, tracking such tra-
jectories through adaptive control will allow to progressively
learn the true model of the robot from the execution errors.

II. MINIMUM INFORMATION ADAPTIVE CONTROL

To take into account the possibility of minimum or no
knowledge about the type of the joints of the robot, [9]
proposed a modification of the DH parameters [10] ai, αi,
di and θi using an additional parameter

ri =

{
0 if ith joint is prismatic
1 if ith joint is revolute.

(1)



The original D-H parameters are changed as

θi = θ0,i + riqi, di = d0,i + qi − riqi. (2)

Here, qi is the ith component of the general coordinate vector
q ∈ IRnq , and θ0,i and d0,i are the ith joint offsets.

As parameters ri ∈ {0, 1}, [9] shows that the differential
kinematics of the robot can still be linearly parametrized as1

ξ̇ = J(q, π)q̇ = Y (q, q̇)π, (3)

where, ξ is the end-effector position, J is the position Jacobian
and π = π(p) is a function of unknown base parameters
p. It is noteworthy that, in general, the map π = π(p) is a
set of over-determined equations. For this reason, to find the
base parameters p a nearest solution approach, such as least-
squares, should be used.

Let e = ξd − ξ be the position error with respect to a
desired trajectory ξd and π̂ an estimate of the real parameters
π. Assuming that the estimated Jacobian Ĵ = J(q, π̂) is
invertible, by choosing the kinematic control law

q̇ = Ĵ−1(ξ̇d +Ke), (4)

and the parameter update law

˙̂π = −QY ᵀe, (5)

where, K and Q, are symmetric and positive-definite matrices,
it can be proved that the error e converges asymptotically to
zero. The proof follows the steps of the traditional kinematic
adaptive control and can be found in [9].

As it typically happens with adaptive control, the zeroing of
the residual error π̃ cannot be guaranteed for all qd. Indeed,
π̃ will evolve inside a manifold described by the equation
Y (qd, q̇d)π̃ = 0. The condition for the convergence of π̃
requires that qd is persistently exciting.

III. TRAJECTORY OPTIMIZATION

A desired trajectory qd is persistently exciting [11], if the
following integral

GY (tf , qd, q̇d) =
1

T

∫ tf

0

Y ᵀ(qd, q̇d)Y (qd, q̇d) dt (6)

is full rank. The goal of estimating the true parameters could
also be seen as a problem of state observability of the system
π̇ = 0 from the measured output y = ξ̇ = Y π. This problem is
completely observable if the associated observability Gramian,
which has the same form as (6), is full rank. Of course, by
maximizing some norm of GY , (e.g. the smallest eigenvalue),
it is possible to determine, among all persistently exciting
trajectories, the most persistently exciting one.

The desired trajectory ξd should be computed so that the
corresponding qd complies with the full-rank condition of
GY . Our approach consists in finding the ξd that maximizes
the smallest eigenvalue λmin of (6). This approach draws

1Indeed, cos(riqi) = 1 − ri − ri cos(qi) and sin(riqi) = ri sin(qi) in
the transformation matrices coming from the DH convention.

inspiration from techniques, such as the optimal perception-
aware trajectory generation presented in [12].

At the present stage, we choose to optimize over qd instead
of ξd in order to avoid performing inverse kinematics during
the optimization. We hence parametrize qd = qd(φ, t), where
φ are parameters that define the geometry and the timing
law along the whole trajectory. This could be done by using
e.g. Fourier series, B-Spline, Lissajous curves, etc. Once an
optimal trajectory in the joint space (solution to the maximiza-
tion) is found, it shall be transformed to the Cartesian space by
using the best available knowledge of the forward kinematics
model with the initial estimate of the unknown parameters π̂0.

To find the most persistently exciting trajectory we consider
the following optimization problem

φ? = argmax
φ

(λmin (GY (qd, q̇d)))

s.t. lφ ≤ φ ≤ uφ .
(7)

The bounds on φ are related to the physical limits of the
robot. Optimization (7) can be solved by using any state-of-
the-art algorithm and allows to get an “optimal” trajectory
qd(φ

?, t) (sub-optimal if local maximum is reached) which
is persistently exciting: indeed, while this trajectory is being
tracked using the adaptive control (4) and the estimation law
(5), the robot parameters estimation error π̃ will converge to
zero.

This notwithstanding, in practice, also the choice of the
gains K and Q plays a fundamental role in the convergence of
π̃ in a reasonable time. This is a classic duality in the problem
of adaptive control: there should always be a trade-off between
exploration and exploitation.

IV. SIMULATIONS

The optimization problem (7) presented in the previous sec-
tion is solved in MATLAB/Simulink© by using the interior-
point method within fmincon. For parametrizing the desired
trajectory to be tracked by the controller, we choose Fourier
series where the ith component of the desired joint trajectory
qd is

qid(φ, t) =

L∑
l=1

[ail sin(lωf t)− bil cos(lωf t)] + qi0. (8)

For the sake of reducing computational complexity, we limit
the number of harmonics to one (L = 1). Hereinafter, we
present two different examples: a single degree of freedom
(DoF) and a two DoF robots. In the following, by “optimal”
or “worst” trajectory we indicate a trajectory that maximizes
or minimizes λmin (GY ), respectively.

A. Single DoF Robot

As a trivial example, consider a simple manipulator with a
single joint, also used as “toy example” in [9]. We suppose
that the only unknown parameter is the joint type r and we
wish to learn it while tracking a trajectory on the horizontal
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Fig. 1: Tracking and parameter estimation errors for the single
DoF robot in the cases of a “worst”, ‘normal” and ‘optimal”
trajectories.

axis. By making use of (2) and setting θ0 = 0, the horizontal
position of the tip, the related Jacobian and regressor are

x(q, r) = (1− r)(q + d0) + rd0cq (9)
J(q, r) = 1− r(1 + d0sq) (10)
Y (q, q̇) = [ q̇ − q̇(1 + d0sq) ]. (11)

Note that the parameters vector was chosen as π = [1 r]ᵀ

and we estimate only the second component. We suppose the
real robot to have a revolute joint (r = 1) and we pretend
to have an erroneous initial knowledge by considering the
joint to be prismatic: the estimate r̂ of the joint type is
hence initialized to 0. The initial condition of the real robot
is q(0) = 5.75 rad (q(0) = −0.53 + 2π rad, which gives
x(0) = 0.87m) and d0 = 1m. Fig. 1 shows the evolution
of both the tracking error and the parameter estimation error
when different desired trajectories are tracked: the “worst” one
in red, the “optimal” one in blue and the one used in [9],
i.e. xd(t) = 0.5 cos(1 rad

s · t)m, hereafter named “normal”.
Fig. 2 contains some sequences showing the execution of
the “optimal” and the “worst” trajectories by the real robot
(in black). In the same Fig. 2 also an “estimated” robot is
drawn (in blue) using the estimated parameter r̂. The “worst”
trajectory happens to be a constant reference xd(t) = 1m;
thus, we have a situation of point-to-point control from x(0).
In this case, it can be seen that, while the tracking error
e converges almost instantaneously to zero, the estimation
error of the joint parameter r changes slightly for a very
short interval of time and then remains unchanged (see also
Fig. 2b where the “estimated” joint remains prismatic). The
same can be noticed in Fig. 1 in the case of a “normal” (not
“optimal”) desired trajectory On the other hand, while tracking
the “optimal” persistently exciting trajectory (blue), both the
tracking and the parameters estimation errors quickly converge
to zero (see Fig. 2a).

Additionally, for understanding the influence of signal
amplitude and frequency on the estimation, we performed
also optimizations with some parameters fixed while varying
others: in particular, 1) with fixed amplitudes a11 and b11
and 2) with fixed angular frequency ωf . In the first case,
as expected, an increase in the angular frequency ωf of the
computed trajectory led to better convergence of the parameter

estimation error r̃. This is shown in Fig. 3a, where the fixed
amplitude values are a11 = 0.4m and b11 = 0.4m while,
for the “optimal” trajectory ωf = 2 rad

s and for the “worst”
trajectory ωf = 0.1 rad

s . These values are the bounds that
were imposed on the parameter ωf for the optimization. In
the other case, when fixing the angular frequency, an increase
in the amplitude of the signals led to better estimation of the
parameter. This was also an expected result and it is shown in
Fig. 3b where we kept ωf = 1 rad

s and the “optimal” trajectory
had a11 = 0.3m and b11 = 0.3m and the “worst” trajectory
had amplitudes almost near to zero.

B. Two DoF Robot

In this subsection, we consider a two DoFs robot. As
in the previous case, we suppose that the only unknown
parameters are the joint types and that we are provided with
the other geometric variables (this is mainly done for reducing
computational complexity of the simulations). Indeed, the
presented approach is able to deal with the identification of
all the robot parameters even though complexity increases
considerably when using the algorithm in [9] to compute
the linear parametrization. The explicit expressions of the tip
position, Jacobian and regressor are not reported here for the
sake of simplicity and space.

We suppose that the real robot is a two revolute joints
planar manipulator, i.e. r1 = 1 and r2 = 1. We initialize the
parameters estimates as r̂1 = 1 and r̂2 = 0. In other words,
we assume to only know the type of the first joint. The initial
conditions of the real robot are q(0) = [−0.84 0.05]ᵀ rad.

By applying our optimization method we found the follow-
ing “optimal” trajectory, which has the following parameters:
a11 = 1.09; b11 = −0.10; a21 = 0.72; b21 = −0.33;
q01 = −0.12; q01 = −0.29; ωf = 1.91. Along the “optimal”
trajectory, the estimation of the joint type parameters r1 and
r2 converges to the real values (see Fig. 4a). Differently from
the 1 Dof robot, in this case we used the MATLAB function
lsqnonlin to estimate the base parameters p = [r1 r2]

ᵀ from
the map π(p). We found also a “worst” trajectory, for which
it can be seen (Fig. 4b) that the parameters remain almost
unchanged. In accordance with what was seen in the 1 DoF
example, also here, the “worst” trajectory consists of a very
low signal amplitude and frequency.

V. CONCLUSION AND FUTURE WORKS

In this work, we combined adaptive control with trajectory
optimization with the aim of proposing a minimum informa-
tion universal controller that “learns” the model of the robot
in order to apply on it strong model-based controls.

To this end, we employed a more generic parametrization
of the robot kinematics, obtained from a modification of the
Denavit-Hartenberg parameters, which includes also a binary
parameter to take into account a possible lack of knowledge
about the type of the joint. We then applied kinematic adaptive
control with a persistently exciting reference trajectory, which
is found by solving an optimization problem using the condi-
tion of persistent excitation found in literature. Through simple
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(a) When tracking the “optimal” trajectory, the estimated robot “converges” to the real revolute joint robot.
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(b) When tracking the “worst” trajectory, the estimated robot remains prismatic even if the true one has a revolute joint.

Fig. 2: Snapshot of the tracking task along “optimal” and “worst” trajectories for the singled DoF robot.
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Fig. 3: Parameter estimation errors for the Single DoF robot
in the cases of a ‘worst”, ‘normal” and ‘optimal” trajectories
with fixed amplitude or angular frequency of the trajectory.
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Fig. 4: Parameter estimation errors for the two DoF robot in
the cases of “optimal” and ‘worst” trajectories.

simulations, the proposed framework was found to be valid and
to guarantee a satisfactory inference of the robot parameters in
reasonable time. However, more simulations and experiments
on real robots are necessary to truly assess the efficiency of
the approach.

Besides, even though our method has the advantage of being
theoretically straightforward, some practical issues might arise
because of the computational complexity due to the numeric
integration of the convolution integral of the regressor. There
are also some other short comings, such as the choice of
parametrizing qd instead of ξd. Indeed, future works might
include addressing the issue of numerical complexity, also by

optimizing directly the end-effector trajectory. We also wish to
extend the framework to the case of dynamic adaptive control
and to the situation of lack of knowledge even of the number
of joints of the robot.
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