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Abstract—Rehabilitation robots are able to quantitatively as-
sess biomechanical performance but they typically do not provide
any information on the users’ subjective experience during the
execution of motor tasks. In the framework of gait rehabilitation
aided by treadmill-based exoskeletons, we developed a method
for the assessment of the users’ psychophysiological state. By
using a Fuzzy logic approach, four indicators can be estimated
based on the recording of physiological signals. The method was
tested on a group of four healthy participants walking with the
Lokomat robotic gait trainer and the correlation among different
pairs of indicators was evaluated.

I. INTRODUCTION

Neurorehabilitation allows people with neurological dis-
eases and gait disorders to recover independent walking in
daily life. Conventional therapy might be enhanced by means
of exoskeleton-aided training, with the possibility of collecting
data on the subjects’ motor performance based on sensors
embedded in the robotic devices. Anyhow, rehabilitation robots
typically do not provide information on the subjective expe-
rience of users. Many attempts have been made to develop
reliable methodologies for the identification of the user’s
state from the analysis of facial expressions and posture [1].
Anyhow, the most effective solutions exploit physiological
signals to determine user’s PsychoPhysiological (PP) state, e.g.
during the interaction with video games or robotic systems [2].
Due to the lack of studies investigating the PP state during
the use of lower-limb assistive/rehabilitation exoskeletons, the
objective of the present work was to develop a method for the
PP assessment of exoskeleton-assisted treadmill walking and
to preliminary test it with healthy participants. The presented
protocol and methods were developed by the Authors within
the framework of a research project aiming at providing devel-
opers of lower-limb exoskeletons and clinical experimenters
with a tool capable of catching the subjective perspective
of users, who are considered to be most important source
of information for the evaluation and the benchmarking of
robot-aided walking. Within this project the analysis of the
user experience is also analyzed based on a novel purposely
developed multi-factor questionnaire [3].

II. MATERIALS AND METHODS
A. Experimental protocol

Four healthy participants (1 male and 3 female, 34.0 +
15.7 y.0.) took part in the study. Experimental tests were

conducted with the treadmill-based exoskeleton Lokomat Pro
(Hocoma), available at Neurorehabilitation 1 Department of
Fondazione Santa Lucia (FSL). Each participant performed
at least 2 preliminary walking sessions with the Lokomat to
become familiar with it. After the familiarisation sessions, a
measurement session was carried out for data collection. Each
(familiarisation or measurement) session lasted about 60 min
including preparation time. Measurement sessions were split in
two phases: i) participants were seated in a comfortable posi-
tion for 4 min, with their eyes closed and acoustically isolated
to promote relaxation (Resting Baseline, RB); ii) participants
walked in interaction with the exoskeleton for 20 min, with
the assistance level set similarly to the familiarization session
(Exoskeleton Training, ET). The protocol was approved by the
FSL Ethics Committee (prot. no. CE/PROG 746).

B. Physiological sensors

Physiological signals were measured by means of two
commercial devices: the Zephyr BioModule 3 (Medtronic), a
chest belt measuring the Respiration Rate (RR) and electrocar-
diogram (ECG), and the Shimmer GSR+ (Shimmer), acquiring
the Galvanic Skin Response (GSR) by means of electrodes on
the index and middle finger. Sensor data, synchronized by a C#
interface, was sent to a host PC via the Bluetooth Low Energy
protocol (the ECG signal was sampled at 250 Hz while the
other signals were sampled at 25 Hz).

C. Data analysis

Three features were extracted from the ECG data: the Heart
Rate (RR) and two Heart Rate Variability (HRV) metrics, i.e.
the RMS of successive heart beats (rMSSD) and the power
distribution in the Low-Frequency (LF) band (0.04—0.15 Hz).
Two components were extracted from the GSR signal: Skin
Conductance Level (SCL), i.e. the tonic level in the absence of
any particular environmental event, and the Skin Conductance
Response (SCR), i.e. an event-dependent, phasic and highly
responsive parameter. A new method, based on Fuzzy logic,
has been developed for the extraction of four PP indicators
of interest: stress level (measure of perceived safety), fatigue
level (measure of prolonged physical engagement), energy
expenditure (measure of comfort), attention level (measure of
involvement). The physiological signals (input of the Fuzzy
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Fig. 1.

First row: Pairwise correlations of the PP indicators (diagonal: univariate distribution of the data; other cells: linear regression models fitted on

the scatter plots); positive stress-energy correlation (green boxes) and negative energy-fatigue correlation (red boxes) were found (Spearman’s correlation
coefficients are labeled). Second row: Time-series of the PP indicators along 15 min of the ET recording.

model) of the ET phase were considered only for the last 15-
min recording and were normalized with respect to the data
collected during the RB phase. For each physiological signal,
the membership functions were created by taking into account
the histogram distribution and by considering low, medium and
high levels [4]. IF/THEN rules were defined based on trends
of variation of physiological signals retrieved from a careful
analysis of the scientific literature [5], [6], [7]. These rules
combine all the input physiological data to estimate the four PP
indicators in time intervals of 1 min, considered to be suitable
for reasonable changes within the present application. To find
correlations among PP indicators a participant-specific and a
global statistical analysis were performed. In particular, the
Spearman’s correlation coefficient p was calculated in pairwise
comparisons.

ITII. RESULTS AND DISCUSSION

In Fig. 1 the pairwise correlations (first row) and the time-
series of the four PP indicators along 15 min of recordings
(second row) are reported. For the four participants, we found
a high correlation (]p| > 0.5) in two cases: positive correlation
between stress level and energy expenditure and negative cor-
relation between energy expenditure and fatigue level. Hence,
as energy expenditure increases, stress level increases and
fatigue decreases. Other correlations for pairs of PP indicators
were heterogeneous among participants. Negative correlation
between fatigue and stress levels was common for P1 and
P2 (p —0.72 and p —0.84, respectively). Different
results were found for the attention-stress (p = 0.91 and
p = —0.66 for P1 and P2, respectively), the energy-attention
(p = 0.89 and p = —0.85 for P1 and P2, respectively) and
the fatigue-attention (p = —0.62 and p = 0.89 for P1 and P2,
respectively) correlations. A common trend for all participants
was not clearly evidenced in PP time-varying patterns (Fig. 1).

IV. CONCLUSIONS

The aim of this work was the development of a method for
the PP assessment of users whose treadmill walking is assisted
by a lower limb exoskeleton. Due to the limited number
of participants the method was demonstrated to be effective
only in highlighting a correlation between energy expenditure
and both stress and fatigue levels. Additional correlations
in pairwise comparisons were heterogeneous and also no
trends of variation in the time-series of the PP indicators
were evidenced. In our ongoing work we are enlarging the
group of participants, recruiting subjects with lesions of the
central nervous system and extending the method to the use
of an overground exoskeleton. Moreover, a correlation among
PP indicators and subjective evaluations, assessed by means
of a dedicated questionnaire, is going to be performed. The
results of our work are expected to provide an international
facility developed for the assessment of bipedal locomotion
(EUROBENCH European project, H2020-779963) with a tool
suitable for the benchmarking of lower-limb exoskeletons.
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