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Abstract—This manuscript presents an algorithm for planning
the divergent component of motion trajectory. In particular, the
proposed approach takes into account a variable center of mass
height while considering the zero moment point as a contact
feasibility criterion. The algorithm is then framed in a non-linear
optimization problem. Tests have been performed in the Gazebo
simulation environment using the one-meter-tall iCub humanoid
robot model. Results show the effectiveness of the approach in
generating feasible trajectories while walking on steps.

Index Terms—DCM Planning, Non-Linear Optimization,
Bipedal Locomotion

I. INTRODUCTION

In the last decades, a common approach for facing the
humanoid robot locomotion problem is to generate an ad-
missible Center Of Mass (CoM) trajectory approximating the
motion of the robot using simplified dynamical modes. The
Linear Inverted Pendulum Model (LIPM) is one of the simplest
models to generate a CoM pattern [1]. The capture point
(CP) [2] and the divergent component of motion (DCM) [3],
are often used as auxiliary variables to decompose the LIPM
in stable and unstable dynamics. The DCM can be considered
an extension of the capture point (CP) to the three-dimensional
case, maintaining the assumption of a constant CoM height.
Attempts at loosening this latter assumption and extending the
DCM to more complex models have also been presented [4].
This paper exploits the DCM model presented in [4] to design
a planner for a feasible DCM trajectory in case of a variable
CoM height. The planner is then embedded in a three-layer
controller architecture [5] and tested on a simulated version of
the iCub humanoid robot.

II. HUMANOID ROBOTS MODELS

In cases where the humanoid robot walks maintaining a
constant height between the CoM and the stance foot, the
motion of the robot can be approximated with the Linear
inverted pendulum model:

ẍ = ω2(x− rzmp), (1)

where x is the projection of the CoM on the walking surface
and rzmp the zero moment point (ZMP). ω is the inverse of
the pendulum time constant. i.e. ω =

√
g/z0, where g is the

gravity constant.

Fig. 1: iCub walks with the presented controller architecture.

The Divergent Component of Motion (DCM) is ξ = x+ẋ/ω
[3]. Since ω is constant, the DCM time derivative is given by:

ξ̇ = ω(ξ − rzmp). (2)

It is interesting to notice that the DCM corresponds to the
unstable dynamics of the linear inverted pendulum model.

If CoM height is not constant, the Linear inverted pendulum
model, and consequently (2), are no more valid approximations
of the humanoid robot dynamics. In order to overcome this
limitation, one may define the Divergent Component of Motion
(DCM) as ξ = x+ ẋ/ω(t). Then the DCM dynamics is [4]:

ξ̇ =

(
ω − ω̇

ω

)
(ξ − rvrp) (3)

where the virtual repellent point (VRP) rvrp is defined as [4]:

rvrp := x− ẍ

ω2 − ω̇
. (4)

Let us assume there exists a γ > 0 such that ω − ω̇/ω > γ, it
is easy to show that the equilibrium point ξ = rvrp is unstable.
On the other hand, assuming ω > ρ, the CoM asymptotically
tends to the DCM.

Applying Newton’s second law, (4) can be expressed as

rvrp = x−
∑
fi −mg

m(ω2 − ω̇)
= recmp +

g

ω2 − ω̇
, (5)

where the enhanced Centroidal Moment Pivot (eCMP)
recmp = x−

∑
fi/(m(ω2 − ω̇)) encodes the direction and

the magnitude of all the contact forces fi acting on the CoM,
given the total robot mass m and the CoM position.



III. 3D-DCM PLANNER

Henceforth, we will assume that a high-level footstep planner
provides information regarding the desired inertial foothold
poses and step timings over a finite time horizon. The gener-
ation of a feasible DCM trajectory is achieved by designing
the planners as a constrained optimal control problem.

The DCM dynamics (3) is extended by considering the
parameter ω as part of the state, such as:

Ẋ =

[
ξ̇
ω̇

]
=

[(
ω − u2

ω

)
(ξ − u1)

u2

]
= f (X ,U) . (6)

where the control input u1 and u2 are equal to the rvrp and
ω̇. The dynamics (6) is used as prediction model, and it is
discretized assuming a constant sampling time δt. The cost
function is then chosen as:

H= ‖ξN − ξ∗N‖QN +

N−1∑
k=0

‖ξk − ξ∗k‖Q + ‖ω̇k‖Rω̇ (7a)

+

N−1∑
k=0

‖ξk+1 − ξk‖Pξ (7b)

+

N−2∑
k=0

‖rvrpk+1 − r
vrp
k ‖Pvrp + ‖ω̇k+1 − ω̇k‖Pω̇ . (7c)

Where (7a) regularizes the DCM along a given reference
trajectory while ω̇ is minimized. (7b) and (7c) smooth the
generated DCM, VRP and ω̇ trajectories. Q, Qn, Rω̇, Pω̇ Pξ
and Pvrp are positive definite matrices.

Eq.(3) and (4) are defined only if ω(t) 6= 0 and ω(t)2 −
ω̇(t) 6= 0. Assuming that ω̇(0) = 0, ω(t)2 − ω̇(t) 6= 0 is
equivalent to ω(t)2 − ω̇(t) > 0. Furthermore if ω̇(0) = 0
we can assume that ω(0) =

√
g/z0, consequently ω(t) 6= 0

can be simplified as ω(t) > 0. It’s worth noticing that the
inequality relations can be easily treated by an off-the-shelf
optimizer. In the case of zero desired angular momentum, the
eCMP coincides with the ZMP. As a consequence the ZMP
contact stability criterion can be satisfied by searching for an
ECMP inside the polyhedron limited by the vertexes of the
two feet. This is verified by means of a set of linear inequality
constraints Akr

vrp
k ≤ bk where Ak and bk are time-variant and

their dimension depends on the type of support.
Since the prediction model (6) is a non-convex function, the

optimal control problem is then converted into a Non-Linear
programming problem and solved via off-the-shelf solvers.

IV. RESULTS

To validate the capability of the proposed planner, we test it
along with a three-layer controller architecture [5]. From top
to bottom, these layers are here called: trajectory optimization,
simplified model control, and whole-body quadratic program-
ming (QP) control. The trajectory optimization layer consists
of the planner described in Sec III. The simplified model
control layer is in charge of finding a feasible linear centroidal
momentum trajectory and is based on (3) and (4). Finally, the
whole-body QP control layer generates robot torques that aim
at stabilizing the references generated by the layers before.
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Fig. 2: Planned DCM and VRP trajectories.

The experiments are carried out on a simulated version of the
iCub humanoid robot – see Fig. 1. The DCM planner takes (in
average) less than 300ms for evaluating a trajectory with time
horizon of 4 s sampled at 100ms. The library used to solve the
optimization is CasADi with IPOPT. Fig. 2 shows the desired
DCM and VRP trajectories generated by the planner. In this
scenario, the robot is walking straight on a set of steps. During
the single support, the VRP moves from the heel to the toe of
the stance foot while in double support the VRP shifts from
one foot to the other.

V. CONCLUSIONS

This paper contributes towards the development of an
algorithm to plan feasible DCM trajectories in case of variable
CoM height. The proposed approach considers the zero moment
point as a contact feasibility criterion. The algorithm is then
framed into a non-linear optimization problem and solved using
CasADi with IPOPT library. We finally connect the planner to
a three-layer controller architecture, and test it on a simulated
version of the iCub humanoid robot. As future work, we plan
to validate the architecture on the real robot.
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