
Toward distributed solutions for heterogeneous fleet
coordination

Alessandro Palleschi+, Anna Mannucci#, Danilo Caporale+, Federico Pecora#, Lucia Pallottino+

Abstract—Warehouse mobile robotics is nowadays entering
the mass-production market. Increasing the number of mobile
robots up to decades raises new challenges: current industrial
practice relies on centralized fleet management, which might
hinder efficacy in the case of large fleets. This paper proposes and
discusses a partially and a fully distributed extension of a cen-
tralized loosely coupled algorithm for multi-robot coordination.
In particular, we aim at investigating: 1) how coordination can be
distributed among robots, and 2) which is the minimum amount
of local information required to enforce safety. Simulation results
show that a partial distribution may improve performance in
terms of arrival times while preserving safety and liveness.

Index Terms—coordination, motion planning, multi-robot sys-
tems, mobile robots

I. INTRODUCTION

The problem of fleet coordination has been tackled by
the scientific community with either centralized, hierarchical,
or distributed algorithms. Even though centralized methods
deliver predictable fleet behavior, provable safety and liveness,
and high performance [1], [2], they do not easily scale to
hundreds of robots, are subject to single points of failure,
and require the central agent to have complete knowledge
of the environment and the robots in the fleets. Conversely,
distributed or decentralized solutions are scalable by nature
and relatively robust to communication failures [3], [4]. How-
ever, since they rely on local information, safety is highly
dependent on their “degree” of distribution. In this paper, we
aim to extend the centralized algorithm proposed in [1], [5]
for coordinating heterogeneous fleets of vehicles subject to
online non-cooperative relocation tasks. Elicited from practical
applications, the approach is general with respect to the robotic
platforms, robot controllers, and motion planners and poses a
minimalist set of requirements to enforce safety. Aiming at
large scale problems, we here investigate two possible modifi-
cations toward decentralization. To analyze their performance
in terms of safety guarantees and complexity, we compare
the proposed solutions with the original approach in several
scenarios.

II. NOTATION AND PRELIMINARIES

The approach in [1], [5] relies on a decoupled centralized
coordinator whose main control loop, running at discrete time

This work was supported in part by the European Union’s Horizon
2020 Research and Innovation Program under Grant Agreement No. 732737
(ILIAD), and in part by the Italian Ministry of Education and Research in the
framework of the CrossLab project (Departments of Excellence).

+ Dipartimento di Ingegneria dell’Informazione and Research Center “E.
Piaggio”, University of Pisa, Italy

Center for Applied Autonomous Sensor Systems, Örebro University,
Sweden

k, is listed in Algorithm 1. Safety is enforced by periodi-
cally revising precedence constraints that regulate access and
progress through pairwise overlapping configurations along
paths (namely, critical sections). Precedence orders are decided
through heuristics, and conservative models of the robots’ kin-
odynamics are used to filter out possibly unfeasible decisions.
The key concepts are formally recalled in the following as a
basis for our solutions (see [1], [5] for details).
Paths and spatial envelopes Consider a fleet of n (possibly
heterogeneous) robots sharing an environment W ⊂ R3. We
use (·)i to indicate that variable (·) refers to robot i. Let Qi be
the robot’s configuration space, and Ri(q) ⊂ R3 its collision
space when in configuration q ∈ Qi. Also, let Qfree

i ⊆ Qi
be obstacle-free space. Then, pi : [0, 1] → Qfree

i is a path
parametrized using the arc length σ ∈ [0, 1]. For each pi,
the spatial envelope Ei is defined as a set of constraints such
that ∪σ∈[0,1]Ri(pi(σ)) ⊆ Ei [6]. Henceforth, we assume that
equality holds; also, let E{σ

′,σ′′}
i = ∪σ∈[σ′,σ′′]Ri(pi(σ)).

Critical sections Let Cij be the decomposition of the set {qi ∈
Qi, qj ∈ Qj | Ri(qi) ∩ Ej 6= ∅ ∨ Rj(qj) ∩ Ei 6= ∅} into its
largest contiguous subsets, each of which is called a critical
section. For each critical section C ∈ Cij , let `Ci ∈ [0, 1] be
the highest value of σi before robot i enters C; similarly, let
uCi ∈ [0, 1] be the lowest value of σi after robot i exits C. We
say that a critical section C is active whether none of the two
robots has exited C. Let also C(k) be the set of active critical
sections at each time k.
Precedence constraints and critical points Given a criti-
cal section C ∈ C(k), the precedence constraint

〈
mi, u

C
j

〉
,

mi, u
C
j ∈ [0, 1] is a constraint stating that robot i is not allowed

to navigate beyond arc length mi along its path until robot
j has passed the arc length uCj - formally, σj(t) < uCj ⇒
σi(t) < mi, where

mi(t) =

{
max

{
`Ci , rij(t)

}
if σj(t) ≤ uCj

1 otherwise
, with rij(t)

being sup
σ

{
σ ∈ [σi(t), u

C
i] : E{σi(t),σ}

i ∩ E{σj(t),u
C
j }

j = ∅
}
.

Let T (k) be the set of precedence constraints such that C ∈
C(k) implies either 〈mi, u

C
j 〉 or 〈mj , u

C
i 〉 ∈ T (k). Safety is

ensured since T (k) imposes a total order of robots’ motion
through C(k). In particular, we define the critical point σ̄i(k)
of robot i at time k as the value of σ corresponding to the last
reachable configuration along pi which adheres to the set of
constraints T (k). Thus, the coordination problem consists in
computing and updating periodically the set of critical points
Σ̄(k) = {σ̄i(k)}ni=1 such that collisions do not occur.

Algorithm 1: Coordination at time k.
1 get last state messages {si}ni=1;
2 if new goals have been posted then
3 update the set of paths P(k) (using appropriate

planners);
4 update the set C(k) of critical sections;

5 revise the set T (k) of precedence constraints;
6 compute the set of critical points Σ̄(k);
7 communicate changed critical points;
8 sleep until control period Tc has elapsed;

Communication The approach assumes a pear-to-pear com-
munication between robots and the coordinator through a
wireless communication channel. Robots are required to asyn-
chronously send an updated state message si (each robot
control period Ti) which contains the vector (qi, q̇i, q̈i) (see
[5] for further details). This information is used in line 5 to
revise precedence.

The approach is proved to be safe [5] and to have linear
complexity with the number of critical sections |C|. Note also
that |T | = |C| by definition. In the next section we aim at
reducing this complexity for large scale problems by exploiting
different levels of decentralization.

III. TOWARD DISTRIBUTED COORDINATION

We focused on two different levels of decentralization,
described in the following.
Partially Distributed The first strategy is based on updating
precedence constraints belonging only to a subset Cε ⊆ C:
precedence constraints related to critical sections that are fur-
ther than a minimum safety distance ε from the two robots are
omitted in T (k), since they do not affect the robot behaviours
at the current time. Formally, either 〈mi, u

C
j 〉 or 〈mj , u

C
i 〉 ∈

T (k) ⇐⇒ C ∈ C(k) and max(lCi − ξi(k), lCj − ξj(k)) < ε,
with ξi(k) being the worst-case stopping arc-length at each
time k1, and ε being a user-defined integer threshold. This
does not change complexity (which is still linear in |C(k)|),
but speeds up computation in lines 5–7 whenever |Cε(k)| (and
hence |T (k)|) is significantly lower than |C(k)|. Note also
that safety is preserved if ε is computed considering message
delays in the worst case (due to asynchronous communication
— see [5] for details) and conservative kinodynamic models.
Fully Distributed Aiming to distribute the overall complexity,
we propose a fully distributed version of Algorithm 1, which
is based on local communication between neighboring robots.
We assume robots can communicate with all the ones that are
inside their communication radius. Each robot i runs a local
version of the coordination algorithm (each at time ki), which
consists in:

1) updating its path pi when a new goal is received and
broadcasting periodically the envelope Ei(ki) and the
status si(ki);

1This quantity corresponds to the nearest arc length at which the robot can
stop (if required to) when driving with maximum velocity.

2) listening to incoming messages (envelopes and status) by
neighboring robots Ni(ki);

3) updating a local set of critical sections Ci(ki) =⋃
j∈Ni

Cij(ki) according to incoming messages;
4) updating a precedence constraint for each C ∈ Ci(ki) –

we use fixed priorities based on robot IDs to decide prece-
dence orders while filtering out unfeasible constraints as
in the original version of the algorithm;

5) computing its own critical point;
6) sleeping until the control period Ti has elapsed.

This allows to cut down complexity from |C(k)| to |Ci(ki)|.
However, the approach cannot ensure the absence of collisions
whenever critical sections end beyond the communication
radius, as shown in the simulation results.

IV. SIMULATIONS

We here compare the performance of an implementation
of Algorithm 1 (named Centralized in the following) with
the two proposed strategies: the Partially Distributed and the
fully distributed (named Distributed in the following). We
leverage the low fidelity simulator presented in [1], [5]. Robot
priorities are defined so that the lower the robot ID, the higher
the priority. Grey arrows in the following figures indicate
precedence constraints (Ri → Rj whenever robot i yields
for robot j at a given C). All tests ran on an Intel Core i7
Processor (6x2.20 GHz) and 16 GB DDR4 RAM Laptop.
Coordination of two robots We consider the scenario shown
in Fig. 1 involving two robots and two critical sections. This
is a particular case in which the envelope of one robot (E1 in
the figure) intersects the other robot’s envelope in the same
configurations along p1. We expect the Partially Distributed
to have the same behavior as the Centralized one (even
though the precedence constraints related to the two critical
sections are computed at a different time k). Conversely, we
expect a different behavior with the Distributed strategy and
small communication radius: since the two critical sections
are further than the communication radius, the robot with the
lowest priority (R2) may move toward its goal while the one
with the highest priority (R1) has still to traverse the second
critical section along its path. This result is confirmed by
simulations, as shown qualitatively in Fig. 1 and quantitatively
in Table I — we list the time the two robots reach the
destination with each strategy in the latter. Note that the first
two strategies have equivalent times for both robots, while this
time is 30% lower for robot R2 in the Distributed case.
Coordination in case of long critical section Long critical
sections are not unusual in logistics applications due to the
presence of aisle in warehouses. It is also common to have two
robots that need to traverse the aisle in the same direction and
opposite directions. We have performed simulations in both
platooning (see Fig. 2) and head-to-head (see Fig. 3) situations

TABLE I
TRAVELING TIMES AND COLLISIONS FOR TWO ROBOTS AND A SINGLE

CRITICAL SECTION

Method tR1 tR2 Collisions

Centralized 23.04 27.30 0
Partially Distributed 23.01 27.14 0

Distributed 23.06 18.41 0

Fig. 1. Coordination for two robots and a single critical section

Fig. 2. Coordination in case of long critical section - Same Direction

Fig. 3. Coordination in case of long critical section - Opposite Direction

Fig. 4. Scenario inducing possible deadlocks

to evaluate the different strategies. The Centralized and the
Partially Distributed strategies have the same behavior while
differences lay in the time at which dependency occurs. It is
worth noting that, in the platooning scenario, the Distributed
strategy allows for correct coordination. Indeed, in this case,
based on the value of the communication radius, the robots are
able to cover the aisle closer to each other (see Fig. 2). On
the other hand, in the head-to-head scenario, limitations of a
fully distributed strategy are shown for long critical sections.
Due to the communication radius dimension, both the robots
enter the critical section without coordination (no dependency
is detected), leading to a collision.
Deadlocks A different scenario with three robots and one
critical section is now considered to evaluate the occurrence
of deadlocks. Referring to Fig. 4, three robots want to reach
a point along a straight path generating a critical section
common to all three agents. Suppose robot R1 has lower
priority than R3 (and as above R3 lower than R2 and R2
lower that R1). Then, no coordination is possible with the
Centralized strategy since all robots get stuck before the
critical section. On the contrary, even small asymmetries in the
scenario allow the Partially Distributed and the Distributed
strategies to avoid the deadlock and coordinate the robot
toward their final destination.

V. COMMENTS

The results of the comparison given in Section IV can be
summarized as follows. The Partially Distributed approach
performs better than the others since: 1) it reduces the time
required by low priority robots to achieve their destinations; 2)
it allows to solves possible deadlocks; 3) it ensures safety. In
particular, we assumed that robots driving at large distances
interested in the same resource could exchange information
and hence coordinate, as in the head-to-head aisle crossing.
This requires a communication system (or local coordinator)
mounted alongside the resource that allows the information

exchange between agents requiring access to the resource that
may not communicate with a direct vehicle-to-vehicle commu-
nication system. With such local coordinators associated with
the aisles, the Partially Distributed can coordinate robots in
such head-to-head conflicts that the Distributed strategy cannot
handle. Note also that the simulated scenarios suggest that: 1)
a completely distributed approach may not solve conflicts in
all cases; 2) a partially distributed hierarchical approach may
result in a better trade-off between complexity vs. performance
and resolution of conflicts and deadlocks.

REFERENCES

[1] F. Pecora, H. Andreasson, M. Mansouri, and V. Petkov, “A loosely-
coupled approach for multi-robot coordination, motion planning and
control,” in Proc. 28th Int. Conf. Autom. Planning & Scheduling, 2018.

[2] M. Čáp, J. Gregoire, and E. Frazzoli, “Provably safe and deadlock-
free execution of multi-robot plans under delaying disturbances,” in
Proc. IEEE/RSJ Int. Conf. Intelligent Robots & Syst., pp. 5113–5118,
2016.

[3] I. Draganjac, D. Miklić, Z. Kovačić, G. Vasiljević, and S. Bogdan, “De-
centralized control of multi-AGV systems in autonomous warehousing
applications,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 4, pp. 1433–
1447, 2016.

[4] M. P. Fanti, A. M. Mangini, G. Pedroncelli, and W. Ukovich, “A
decentralized control strategy for the coordination of AGV systems,”
Control Eng. Practice, vol. 70, pp. 86–97, 2018.

[5] A. Mannucci, L. Pallottino, and F. Pecora, “Provably safe multi-robot co-
ordination with unreliable communication,” IEEE Robot. Autom. Letters,
vol. 4, no. 4, pp. 3232–3239, 2019.

[6] H. Andreasson, J. Saarinen, M. Cirillo, T. Stoyanov, and A. Lilienthal,
“Fast, continuous state path smoothing to improve navigation accuracy,”
in 2015 IEEE Inter. Conf. on Robotics and Automation (ICRA), pp. 662–
669, IEEE, 2015.

