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Abstract—Despite the strong demand for solutions and the
intense research effort, fully autonomous object manipulation is
not yet solved. One of the main challenges is the large variety of
conditions in which the objects should be handled. There is a need
for solutions that integrate both advanced perception systems
for object recognition and pose estimation and robust planning
algorithms. In this work, we present a fully autonomous dual-arm
picking platform for intralogistics. The system is the result of the
integration of a dual-arm manipulation system with a perception
system for object registration, 3D instance-aware mapping, and
6D pose estimation of the objects. Eventually, we present the
results of experiments on objects and conditions relevant to the
intralogistics domain to assess the performance of the system.

Index Terms—motion planning, dual-arm manipulation, intral-
ogistics

I. INTRODUCTION

A growing need from industry has been one of the primary
driving factors of research in autonomous manipulation. Al-
though several production processes have reached a high level
of automation, intralogistics still requires manual operations,
especially in picking tasks [1]. With companies worldwide
investing in automation driven by economic and efficiency
considerations, the recent spread of the COVID-19 pandemic
is also expected to accelerate and facilitate the deployment of
autonomous robotics solutions to reduce human contact and
favor social distancing. However, the commercially available
autonomous solutions for material handling work mostly for
a limited variety of objects and specific configurations [2]],
and often based on custom grippers purposely designed to
match the features of a specific object. These ad hoc solutions
are not economically sustainable for small and medium-sized
enterprises (SMEs) [3] that have to face different challenges:
1) the large variety of objects [4], due to shorter product life
cycles and dynamic production changeovers; ii) unstructured
environments [2]; iii) the diversity at operating conditions.

This paper presents a manipulation system for logistics
capable of performing picking operations in a completely
autonomous way. The system is the result of the integration
of the WRAPP-up robotic platform, a dual-arm solution for
intralogistics presented in [5], with a cutting-edge perception
system [6]. Experiments on different objects and conditions are
presented to assess the performance of the proposed solution.
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Fig. 1. Block scheme of the integrated system. The reactive planner algorithm,
that take as input the information given by the perception system, is used to
adapt and re-plan online the picking strategy based on contact information
from force torque sensors at the end-effectors.

II. MANIPULATION FOR INTRALOGISTICS

Analyzing the different manipulation tasks that characterize
the intralogistics scenario, we could classify them into three
main categories, listed in order of increasing difficulty: A)
Manipulation of a single object; B) Manipulation of multiple
loosely-packed objects; C) Manipulation of multiple tightly-
packed objects. Cases A) and B) are typical of picking objects
from a conveyor belt, while Case C) is typical of picking
operations from pallets or shelves.

In this work, we focus on addressing cases A)-B). The main
challenge to solve case C) is posed by the inherent difficulty
of the underlying perception problem. It requires to reliably
distinguish between very close instances of the same object
and accurately estimate their 6D pose from only a partial view.
For a general object perception system, these conditions still
pose an open problem.

III. THE DUAL-ARM MANIPULATION PLATFORM

The solution here proposed to solve cases A)-B) is a dual-
arm robotic platform, WRAPP-up, equipped with an advanced
planning module and a perception system. WRAPP-up is
an autonomous dual-arm manipulation system made of two
KUKA LWR provided with an adaptive anthropomorphic
hand, the Pisa/IIT SoftHand, and an end-effector based on an
actuated belt, the Velvet Tray [5]]. Force torque sensors ATI
mini45 and ATI mini75 are fixed at the wrist of the hand and
of the velvet, respectively. An Asus Xtion PRqﬂ camera is
fixed on top of the hand.

Thttps://www.asus.com/3D-Sensor/Xtion_PRO/



Fig. 2. General Scheme of the Reactive Planning Framework

Fig. 3. Objects used in the experiments.

The main components that constitute the intelligence of the
integrated system are i) an object detection algorithm and ii) a
reactive motion planner. A scheme explaining how the system
works, and the connections between its building-blocks, is
displayed in Fig. [1]

A. Object Detection Algorithm

We employ the Object-RPE framework [6] which couples
Convolutional Neural Networks (CNNs) and a state-of-the-
art dense Simultaneous Localization and Mapping (SLAM)
system, ElasticFusion [7]], to achieve high-quality semantic
reconstruction as well as robust 6D pose estimation. The input
RGB-D data is processed by a segmentation module and the
reported object instance detections are filtered and matched to
the existing 3D reconstruction. The predicted pose is used as a
measurement update in a Kalman filter to estimate an optimal
6D pose of the object. Object-RPE exploits the availability
of multiple observations of the scene acquired from different
viewpoints. For more details on the algorithm, the interested
reader can refer to [[6]].

B. Reactive Motion Planner

The second main block that constitutes the intelligence of
the system is the reactive motion planner, the green block
in Fig. [I] It generates a manipulation strategy to correctly
pick the object. We identified a set of atomic actions, named
manipulation primitives, based on considerations about the
physical characteristics and the possible configurations of
the objects to manipulate in an intralogistics context. The
primitives, named Sliding, Horizontal Rotation, and Vertical
Rotation, and presented in more details in [5], are expressed
as a sequence of Cartesian waypoints for the end-effectors,
relative to the pose of the object. As highlighted in Fig. [T} the
planning module takes as inputs the classes of the (possibly
multiple) detected objects, their poses, and dimensions. Then,
it autonomously selects the picking strategy and generates
a reference path for the end-effectors. Given the path, a
minimum-time trajectory that takes into account constraints up
to the jerk level is generated using the optimization algorithm
presented in [8f], adapted to run online.

To increase the robustness of the platform, we integrated
force information at the planning stage. More in detail, the
measured forces are used to detect a possible contact with
an object whenever they exceed an user-defined threshold.

The contact information is used as a trigger to plan online
the motion of the robot in a reactive fashion. This reactive
approach exploits the fact that we can decompose each picking
strategy in a finite number of steps. The planner is then based
on finite state machine, in which each state represents a step
of the strategy. Indeed, we are not planning the complete
trajectory all at once, but we plan it step-by-step and the
decision on which step to plan is triggered online based on
contact information and the current positions of the end-
effectors.

Given the pose of the object, a picking strategy, as depicted
in Fig.[2] is represented as a finite state machine. The states are
defined by the Manipulation Primitives and two other classes
of actions to be executed before actually perform a primitive.
These two actions have been defined as Positioning (P), in
which one, or both, the end-effectors are placed near the target
object, and Approach (A), that represents the state in which
the end-effectors approach the object and establish a contact
before starting the manipulation primitive (M).

The pose of the target object is used to start the Positioning
phase and plan a trajectory for the robot. Then, one, or both,
the end-effectors start approaching, and contact information
is used to trigger the transition. If no contact is detected,
the robot keeps moving toward the object, whereas, if an
unexpected contact is detected, it could trigger the transition
to an Emergency state. Once the expected contact is detected,
the planner starts the selected Manipulation Primitive.

The transitions from the Manipulation Primitive state to the
other states, Positioning or Emergency, are triggered by contact
information and/or by the end-effectors reaching a specified
position, depending on the strategy.

IV. EXPERIMENTAL VALIDATION

We tested the platform on a representative subset of the set
of items described in [5] (see Fig. . Three of the selected
items are cuboids, and two are cylinders with differing size,
weight, and texture. Examples of the poses retrieved by the
perception system for these objects are reported in [4]

We performed several tests to address manipulation cases
A)-B). Given the shapes of the objects used for the tests, and
considering the possible configuration that they can assume

Fig. 4. The output of the perception algorithm is shown overlaid on the point
cloud of the scene.



(a) Sliding - Average Execution Time: 12 s
Time: 19 s

(b) Vertical Rotation + Sliding - Average Execution (c) Horizontal Rotation + Sliding - Average Execu-

tion Time: 40 s

Fig. 5. The three picking strategies used to pick box-shaped and cylinder-shaped objects in various configurations.

TABLE I
PERFORMANCE OF THE MANIPULATION SYSTEM - SINGLE OBJECT

| Object | # of picking actions | Picking rate |
yellow bucket 10 100%
green bucket 10 80%
brown box 10 100%
green box 10 90%
white box 10 100%

| Picking strategy | # of picking actions | Picking rate |

Sliding 13 92.3%

Vertical Rotation + Sliding 17 100%

Horizontal Rotation + Sliding 20 90%

TABLE II
PERFORMANCE RESULTS FOR MULTIPLE OBJECTS
| Object | # of picking actions | Picking rate |

Loosely-packed boxes 20 95%
Loosely-packed cylinders 20 90%

in the workspace, three different picking strategies have been
used. They are shown in Fig. [5] together with their average
execution times. These strategies represent a particular case of
those described in Section Two strategies are dedicated
to the picking of box-shaped objects, namely a Sliding action
for non rotated boxes, i.e., boxes aligned with the nominal
picking direction, Fig. [5(a), and a combination of Vertical
Rotation and Sliding to pick rotated boxes, Fig. [5[b). For the
two cylinders, we defined a strategy based on the Horizontal
Rotation primitive, depicted in Fig. [5(c). The hand is used to
lift the cylinder and the Velvet Tray is placed below it. Then,
a collaborative Sliding is performed to complete the picking.

Case A) We performed 10 picking actions per object. A
picking action is considered successful if the object is carried
to the unloading position without falling during the task. The
success rate associated to each object and to each picking
strategy is reported in Tab.

It is worth noting that for cuboid objects the combination of
Vertical Rotation and Sliding corresponds to a 100% picking
rate, while a failure is present when the simple Sliding strategy
is used. More specifically, the failure is on the picking of the
green box.

On the other hand, for the two cylinders we implemented
only one picking strategy. We can see that this strategy is
very effective for the bigger one, the yellow bucket, while for
a smaller object turned out to be less performing and robust.
Indeed, we noted how the reduced footprint and weight of the
green bucket makes it more likely for the object to tip over
while lifted by the hand, or during the sliding action.

Case B) To address manipulation case B), we performed 10

tests with two boxes placed in a loosely-packed configuration,
for a total of 20 picking actions. More specifically, we picked

7 times the white box, 7 times the green box, and 6 times the
brown box. Of the 20 picking actions, 11 where performed
using a Sliding strategy, while 9 used the combination of
Vertical Rotation and Sliding. Furthermore, we performed
10 tests with two buckets in a loosely packed configuration,
picking 10 times each the yellow and the green bucket. The
results of the tests are reported in Table |lIl As can be seen, the
picking performance for the cylinders is not strongly affected
by their relative configuration on the pallet, sticking around
90% in both configurations A) and B). The performance of
the boxes, instead, slightly degrades when multiple objects
are considered rather than single ones.

V. CONCLUSION

In this work, we presented a fully autonomous integrated
system for picking operations. The potential of the platform
emerged, due to its adaptability in handling objects with a wide
range of sizes. The current integrated system is potentially
able to grasp an even more diverse set of objects, exploiting
recent results in the combination of perception systems and
data-driven algorithms for grasping with robotic hands [9].
An important part of our future works will be dedicated to
solving manipulation case C), focusing on the recognition and
pose estimation of very close instances of the same goods.
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